matlab人头检测的代码-hrnet_pose_single_gpu:从原始HR-NetPose派生,但可以运行到单个GPU

上传者: 38733733 | 上传时间: 2022-04-17 09:41:13 | 文件大小: 143KB | 文件类型: ZIP
matlab人头检测的代码用于人体姿势估计的深度高分辨率表示学习(CVPR 2019) 消息 [2019/08/27] HigherHRNet现已启动,这是由HRNet支持的自下而上的人体姿态估计方法。 我们还将在发布代码和模型,敬请期待! 我们的新作品可在上找到。 我们的HRNet已应用于多种视觉任务,例如和。 介绍 这是的非官方pytorch实现。 主要结果 MPII val的结果 拱 头 肩膀 弯头 手腕 时髦的 膝盖 踝 吝啬的 均值@ 0.1 pose_resnet_50 96.4 95.3 89.0 83.2 88.4 84.0 79.6 88.5 34.0 pose_resnet_101 96.9 95.9 89.5 84.4 88.4 84.5 80.7 89.1 34.0 pose_resnet_152 97.0 95.9 90.0 85.0 89.2 85.3 81.3 89.6 35.0 pose_hrnet_w32 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3 37.7 笔记: 使用翻转测试。 输入大小为256x256 pose

文件下载

资源详情

[{"title":"( 56 个子文件 143KB ) matlab人头检测的代码-hrnet_pose_single_gpu:从原始HR-NetPose派生,但可以运行到单个GPU","children":[{"title":"hrnet_pose_single_gpu-master","children":[{"title":"figures","children":[{"title":"hrnet.png <span style='color:#111;'> 29.01KB </span>","children":null,"spread":false}],"spread":true},{"title":"experiments","children":[{"title":"coco","children":[{"title":"hrnet","children":[{"title":"w32_384x288_adam_lr1e-3.yaml <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"w32_256x192_adam_lr1e-3.yaml <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"w48_384x288_adam_lr1e-3.yaml <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"w48_256x192_adam_lr1e-3.yaml <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false}],"spread":true},{"title":"resnet","children":[{"title":"res50_256x192_d256x3_adam_lr1e-3.yaml <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"res50_384x288_d256x3_adam_lr1e-3.yaml <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"res101_384x288_d256x3_adam_lr1e-3.yaml <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"res152_256x192_d256x3_adam_lr1e-3.yaml <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"res101_256x192_d256x3_adam_lr1e-3.yaml <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"res152_384x288_d256x3_adam_lr1e-3.yaml <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"mpii","children":[{"title":"hrnet","children":[{"title":"w32_with_flip_with_shift_no_quarter.yaml <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"w48_256x256_adam_lr1e-3.yaml <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"w32_with_flip_no_shift_with_quarter.yaml <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"w32_no_flip_no_shift_with_quarter.yaml <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"w32_no_flip_no_shift_no_quarter.yaml <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"w32_256x256_adam_lr1e-3.yaml <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"w32_with_flip_no_shift_no_quarter.yaml <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false}],"spread":true},{"title":"resnet","children":[{"title":"res152_256x256_d256x3_adam_lr1e-3.yaml <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"res101_256x256_d256x3_adam_lr1e-3.yaml <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"res50_256x256_d256x3_adam_lr1e-3.yaml <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"lib","children":[{"title":"utils","children":[{"title":"utils.py <span style='color:#111;'> 6.88KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"vis.py <span style='color:#111;'> 4.93KB </span>","children":null,"spread":false},{"title":"transforms.py <span style='color:#111;'> 3.52KB </span>","children":null,"spread":false},{"title":"zipreader.py <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"pose_resnet.py <span style='color:#111;'> 9.24KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 541B </span>","children":null,"spread":false},{"title":"pose_hrnet.py <span style='color:#111;'> 17.75KB </span>","children":null,"spread":false}],"spread":true},{"title":"core","children":[{"title":"inference.py <span style='color:#111;'> 2.53KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 3.00KB </span>","children":null,"spread":false},{"title":"function.py <span style='color:#111;'> 9.42KB </span>","children":null,"spread":false},{"title":"evaluate.py <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"nms","children":[{"title":"gpu_nms.pyx <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"setup_linux.py <span style='color:#111;'> 5.09KB </span>","children":null,"spread":false},{"title":"nms_kernel.cu <span style='color:#111;'> 4.94KB </span>","children":null,"spread":false},{"title":"cpu_nms.pyx <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false},{"title":"gpu_nms.cu <span style='color:#111;'> 280.74KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"gpu_nms.hpp <span style='color:#111;'> 146B </span>","children":null,"spread":false},{"title":"nms.py <span style='color:#111;'> 5.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"dataset","children":[{"title":"mpii.py <span style='color:#111;'> 8.17KB </span>","children":null,"spread":false},{"title":"coco.py <span style='color:#111;'> 15.00KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 456B </span>","children":null,"spread":false},{"title":"JointsDataset.py <span style='color:#111;'> 9.91KB </span>","children":null,"spread":false}],"spread":true},{"title":"config","children":[{"title":"default.py <span style='color:#111;'> 3.39KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 369B </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"Makefile <span style='color:#111;'> 116B </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 135B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"tools","children":[{"title":"train.py <span style='color:#111;'> 6.66KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 3.88KB </span>","children":null,"spread":false},{"title":"_init_paths.py <span style='color:#111;'> 739B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 12.38KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明