dynamic_speed_optimization:建模船舶性能曲线以减少油耗

上传者: 42144707 | 上传时间: 2025-09-11 00:26:19 | 文件大小: 12.77MB | 文件类型: ZIP
动态速度优化(Dynamic Speed Optimization,DSO)是一种利用先进的数据科学和机器学习技术来改进船舶运营效率的方法,旨在降低燃料消耗,从而减少运营成本和环境影响。标题和描述中的核心概念是通过建模船舶性能曲线来实现这一目标。以下是相关的IT知识点: 1. **随机森林(Random Forest)**:这是一种机器学习算法,由多个决策树组成,每个树独立地对输入数据进行分类或回归。在本案例中,随机森林可能被用来预测不同速度下船舶的燃油效率,以找出最佳运行速度。 2. **scikit-learn**:这是一个广泛使用的Python库,用于数据挖掘和数据分析,包含各种机器学习算法。在这个项目中,scikit-learn被用作实现随机森林和其他可能的回归模型的工具。 3. **燃油成本(Fuel Costs)**:在船舶行业中,燃油成本是运营成本的主要部分。通过DSO,可以找到在保持航行时间不变的情况下,减少燃油消耗的策略,从而节省成本。 4. **船舶性能曲线(Ship Performance Curves)**:这些曲线描绘了船舶在不同速度下的功率、阻力、燃油消耗等关键性能指标。构建这些曲线是DSO的关键步骤,它们基于实测数据或理论计算。 5. **船速(Ship Speed)**:船舶的运行速度直接影响其燃油效率。通过模型预测,可以在考虑风、浪、潮汐等多种因素后,找到最优速度以降低燃油消耗。 6. **回归建模(Regression Modeling)**:回归分析是统计学的一种方法,用于预测连续变量(如燃油消耗)与一个或多个自变量(如船速)的关系。在这个项目中,回归模型可能用于估计船舶在不同条件下的燃油效率。 7. **Jupyter Notebook**:这是一种交互式的工作环境,常用于数据处理、分析和可视化。在DSO项目中,可能使用Jupyter Notebook来编写和展示代码、分析结果以及创建图表。 8. **项目结构(dynamic_speed_optimization-master)**:这个目录名暗示了这是一个Git仓库的主分支,可能包含了项目的源代码、数据集、分析报告和其他相关资源。 通过以上技术,DSO项目可以实现船舶运营的精细化管理,不仅有助于降低运营成本,还能响应全球对减少温室气体排放的要求,促进航运业的可持续发展。在实际应用中,这样的模型可能需要不断更新和优化,以适应变化的环境条件和船舶状态。

文件下载

资源详情

[{"title":"( 52 个子文件 12.77MB ) dynamic_speed_optimization:建模船舶性能曲线以减少油耗","children":[{"title":"dynamic_speed_optimization-master","children":[{"title":"Ship_Performance.pdf <span style='color:#111;'> 2.40MB </span>","children":null,"spread":false},{"title":"img","children":[{"title":"09_Wave.png <span style='color:#111;'> 54.39KB </span>","children":null,"spread":false},{"title":"31_Random_Forest_Residuals.png <span style='color:#111;'> 110.25KB </span>","children":null,"spread":false},{"title":"22_Shaft_Outliers_Removed.png <span style='color:#111;'> 12.87KB </span>","children":null,"spread":false},{"title":"27_Linear_Residuals.png <span style='color:#111;'> 135.95KB </span>","children":null,"spread":false},{"title":"28_Linear_Predictions.png <span style='color:#111;'> 209.52KB </span>","children":null,"spread":false},{"title":"Commercial_Shipping.jpg <span style='color:#111;'> 88.26KB </span>","children":null,"spread":false},{"title":"01_Raw_Data.png <span style='color:#111;'> 184.76KB </span>","children":null,"spread":false},{"title":"03_Time_and_Main_Engine.png <span style='color:#111;'> 54.64KB </span>","children":null,"spread":false},{"title":"44_Sensor_Distribution.png <span style='color:#111;'> 14.35KB </span>","children":null,"spread":false},{"title":"30_Random_Forest_Importance.png <span style='color:#111;'> 29.76KB </span>","children":null,"spread":false},{"title":"29_Random_Forest_Hyperparameters.png <span style='color:#111;'> 61.42KB </span>","children":null,"spread":false},{"title":"32_Random_Forest_Predictions.png <span style='color:#111;'> 203.77KB </span>","children":null,"spread":false},{"title":"04_Draft.png <span style='color:#111;'> 75.91KB </span>","children":null,"spread":false},{"title":"07_Wind.png <span style='color:#111;'> 134.97KB </span>","children":null,"spread":false},{"title":"25_Data_Clean_Removed.png <span style='color:#111;'> 197.19KB </span>","children":null,"spread":false},{"title":"12_Temperature_Clean.png <span style='color:#111;'> 21.16KB </span>","children":null,"spread":false},{"title":"10_Time_and_Main_Engine_Clean.png <span style='color:#111;'> 56.27KB </span>","children":null,"spread":false},{"title":"34_Linear_Performance_Draft.png <span style='color:#111;'> 182.48KB </span>","children":null,"spread":false},{"title":"08_Sea.png <span style='color:#111;'> 77.54KB </span>","children":null,"spread":false},{"title":"43_Sensor_Difference.png <span style='color:#111;'> 23.12KB </span>","children":null,"spread":false},{"title":"23_Speed_Outliers.png <span style='color:#111;'> 13.33KB </span>","children":null,"spread":false},{"title":"24_Speed_Outliers_Removed.png <span style='color:#111;'> 13.29KB </span>","children":null,"spread":false},{"title":"13_Data_Clean.png <span style='color:#111;'> 200.85KB </span>","children":null,"spread":false},{"title":"26_Linear_Coefficients.png <span style='color:#111;'> 50.87KB </span>","children":null,"spread":false},{"title":"39_Random_Forest_Performance_Draft.png <span style='color:#111;'> 147.79KB </span>","children":null,"spread":false},{"title":"37_Linear_Performance_Sea.png <span style='color:#111;'> 113.43KB </span>","children":null,"spread":false},{"title":"38_Random_Forest_Performance.png <span style='color:#111;'> 74.53KB </span>","children":null,"spread":false},{"title":"16_Speed_Squared.png <span style='color:#111;'> 37.16KB </span>","children":null,"spread":false},{"title":"14_Draft_Trim_List.png <span style='color:#111;'> 64.67KB </span>","children":null,"spread":false},{"title":"17_Apparent_Sea_Direction.png <span style='color:#111;'> 48.36KB </span>","children":null,"spread":false},{"title":"40_Random_Forest_Performance_Trim.png <span style='color:#111;'> 109.09KB </span>","children":null,"spread":false},{"title":"35_Linear_Performance_Trim.png <span style='color:#111;'> 158.58KB </span>","children":null,"spread":false},{"title":"41_Random_Forest_Performance_Wind.png <span style='color:#111;'> 143.04KB </span>","children":null,"spread":false},{"title":"02_Missing_Records.png <span style='color:#111;'> 113.06KB </span>","children":null,"spread":false},{"title":"06_Speed.png <span style='color:#111;'> 103.46KB </span>","children":null,"spread":false},{"title":"36_Linear_Performance_Wind.png <span style='color:#111;'> 209.41KB </span>","children":null,"spread":false},{"title":"18_Correlation_Coefficients.png <span style='color:#111;'> 90.61KB </span>","children":null,"spread":false},{"title":"45_Sensor_Rolling_Average.png <span style='color:#111;'> 36.57KB </span>","children":null,"spread":false},{"title":"19_Fuel.png <span style='color:#111;'> 8.02KB </span>","children":null,"spread":false},{"title":"21_Shaft_Outliers.png <span style='color:#111;'> 13.22KB </span>","children":null,"spread":false},{"title":"42_Random_Forest_Performance_Sea.png <span style='color:#111;'> 90.39KB </span>","children":null,"spread":false},{"title":"11_Rudder_Clean.png <span style='color:#111;'> 16.60KB </span>","children":null,"spread":false},{"title":"20_Wind_Correlation.png <span style='color:#111;'> 39.39KB </span>","children":null,"spread":false},{"title":"33_Linear_Performance.png <span style='color:#111;'> 81.82KB </span>","children":null,"spread":false},{"title":"05_Shaft.png <span style='color:#111;'> 93.03KB </span>","children":null,"spread":false},{"title":"15_Shaft_Speed_Squared.png <span style='color:#111;'> 35.84KB </span>","children":null,"spread":false}],"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"src","children":[{"title":"Ship_Performance.ipynb <span style='color:#111;'> 9.10MB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 175B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.36KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明