python数据分析与可视化.pdf

上传者: 42506246 | 上传时间: 2025-10-31 14:26:38 | 文件大小: 75KB | 文件类型: PDF
Python是一种强大的编程语言,广泛用于数据分析与可视化。下面是一些常用的Python库,以及如何使用它们进行数据分析与可视化的简要概述。 数据分析库 1. NumPy:NumPy是Python语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。 2. python复制代码 import numpy as np a = np.array([1, 2, 3]) b = np.array([[1, 2], [3, 4]]) 1. Pandas:Pandas是一个提供高性能,易于使用的数据结构和数据分析工具的Python库。它提供了DataFrame对象,可以方便地处理表格数据。 2. python复制代码 import pandas as pd df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) 1.SciPy:SciPy是一个开源的Python算法库和数学工具包。SciPy包含的模块有最优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理、图像处理、常微分方程求解和其他 ### Python 数据分析与可视化知识点详解 #### 一、Python 数据分析库 Python 作为一种功能强大的编程语言,在数据科学领域有着广泛的应用。以下是几种常用的数据分析库及其应用介绍: ##### 1. NumPy **简介**:NumPy(Numerical Python)是 Python 的一个重要扩展库,专门用于处理大型多维数组和矩阵,以及对这些数组执行数学运算。 **特点**: - 支持高效的多维数组对象; - 提供了大量的数学函数来操作数组; - 高性能,内部实现采用 C 语言编写。 **示例代码**: ```python import numpy as np # 创建一维数组 a = np.array([1, 2, 3]) print(a) # 创建二维数组 b = np.array([[1, 2], [3, 4]]) print(b) ``` **应用场景**: - 数值计算的基础库; - 处理大规模数值数据。 ##### 2. Pandas **简介**:Pandas 是一个为数据分析而设计的 Python 库,提供了一种灵活高效的数据结构 DataFrame,非常适合于表格型数据的处理。 **特点**: - 支持多种数据类型,如整数、浮点数、字符串等; - 提供了数据清洗、转换、聚合等多种操作; - 与 NumPy 兼容,可以轻松进行数组运算。 **示例代码**: ```python import pandas as pd # 创建 DataFrame df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) print(df) ``` **应用场景**: - 数据清洗与预处理; - 数据分析与探索性分析。 ##### 3. SciPy **简介**:SciPy 是一个基于 NumPy 的科学计算库,提供了大量用于数值计算的高级函数,涵盖了从最优化到信号处理等多个领域。 **特点**: - 包含了大量的数学、科学和工程计算模块; - 提供了线性代数、优化、积分等模块; - 支持信号和图像处理。 **示例代码**: ```python from scipy.optimize import minimize # 最小化函数 def rosen(x): return sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0) # 调用最小化函数 res = minimize(rosen, [1.3, 0.7, 0.8, 1.9, 1.2], method='nelder-mead',options={'xtol': 1e-8, 'disp': True}) print(res.x) ``` **应用场景**: - 数学问题的求解; - 科学与工程计算。 #### 二、Python 数据可视化库 数据可视化是数据分析的重要环节之一,它可以帮助我们更好地理解数据并发现其中的规律。以下是一些常用的数据可视化库: ##### 1. Matplotlib **简介**:Matplotlib 是 Python 中最常用的数据可视化库之一,主要用于生成静态、动态或交互式的可视化图形。 **特点**: - 功能强大,支持多种图表类型; - 可以生成高质量的图像; - 跨平台支持。 **示例代码**: ```python import matplotlib.pyplot as plt # 绘制简单折线图 plt.plot([1, 2, 3], [4, 5, 6]) plt.show() ``` **应用场景**: - 基础的数据可视化需求; - 高质量的图表生成。 ##### 2. Seaborn **简介**:Seaborn 是基于 Matplotlib 的一个高级数据可视化库,旨在让统计图形更加美观。 **特点**: - 支持高级的图形类型; - 提供了更多定制选项; - 更好的默认样式和颜色方案。 **示例代码**: ```python import seaborn as sns # 加载示例数据集 tips = sns.load_dataset("tips") # 绘制散点图 sns.relplot(x="total_bill", y="tip", hue="sex", data=tips) plt.show() ``` **应用场景**: - 需要更美观的统计图形; - 复杂的数据可视化需求。 ##### 3. Plotly **简介**:Plotly 是一个支持多种编程语言的交互式可视化库,提供了丰富的图表类型和交互功能。 **特点**: - 支持交互式图表; - 支持多种图表类型; - 可以在线共享图表。 **示例代码**: ```python import plotly.express as px # 加载示例数据集 df = px.data.tips() # 绘制散点图 fig = px.scatter(df, x="total_bill", y="tip", color="sex") fig.show() ``` **应用场景**: - 需要交互式图表; - 在线分享和展示数据。 ##### 4. Bokeh **简介**:Bokeh 是一个用于创建复杂统计图形的交互式可视化库,支持数据驱动的动态交互性。 **特点**: - 支持数据驱动的动态交互; - 适合处理大型数据集; - 可以导出为 HTML 文件。 **应用场景**: - 大数据集的可视化; - 高度交互性的图表。 ##### 5. GeoPandas 和 Folium **简介**:GeoPandas 扩展了 Pandas 的 DataFrame 对象,使其实现了地理空间数据的操作;Folium 是一个基于 Leaflet.js 的 Python 库,用于创建交互式地图。 **特点**: - GeoPandas 支持地理空间数据的操作; - Folium 可以创建交互式地图。 **示例代码**: ```python import geopandas as gpd import folium # 加载地理数据 world = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres')) # 创建地图 m = folium.Map(location=[45.5236, -122.6750]) # 添加地理数据 folium.GeoJson(world).add_to(m) # 显示地图 m ``` **应用场景**: - 地理空间数据的可视化; - 交互式地图的创建。 Python 提供了丰富的工具库来支持数据分析和可视化的需求。根据不同的应用场景和需求,可以选择合适的库来进行开发。无论是数据预处理、清洗还是最终的可视化展示,都有相应的库来支持。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明