openNN-v5.0.5【无需积分值】

上传者: 43325228 | 上传时间: 2022-07-20 16:06:08 | 文件大小: 5.18MB | 文件类型: ZIP
【无需积分值】 openNN是高效的C++神经网路库。 已在windows 64位下成功 lib文件夹中是所需的静态链接库 include文件夹中是所需的全部头文件 具体使用方法见https://blog.csdn.net/weixin_43325228/article/details/125887630

文件下载

资源详情

[{"title":"( 47 个子文件 5.18MB ) openNN-v5.0.5【无需积分值】","children":[{"title":"openNN","children":[{"title":"include","children":[{"title":"learning_rate_algorithm.h <span style='color:#111;'> 9.35KB </span>","children":null,"spread":false},{"title":"perceptron_layer.h <span style='color:#111;'> 8.17KB </span>","children":null,"spread":false},{"title":"probabilistic_layer.h <span style='color:#111;'> 7.16KB </span>","children":null,"spread":false},{"title":"config.h <span style='color:#111;'> 712B </span>","children":null,"spread":false},{"title":"inputs_selection.h <span style='color:#111;'> 7.64KB </span>","children":null,"spread":false},{"title":"loss_index.h <span style='color:#111;'> 12.34KB </span>","children":null,"spread":false},{"title":"convolutional_layer.h <span style='color:#111;'> 7.46KB </span>","children":null,"spread":false},{"title":"gradient_descent.h <span style='color:#111;'> 7.07KB </span>","children":null,"spread":false},{"title":"scaling_layer.h <span style='color:#111;'> 5.16KB </span>","children":null,"spread":false},{"title":"cross_entropy_error.h <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"conjugate_gradient.h <span style='color:#111;'> 7.62KB </span>","children":null,"spread":false},{"title":"pooling_layer.h <span style='color:#111;'> 4.94KB </span>","children":null,"spread":false},{"title":"bounding_layer.h <span style='color:#111;'> 3.48KB </span>","children":null,"spread":false},{"title":"quasi_newton_method.h <span style='color:#111;'> 9.83KB </span>","children":null,"spread":false},{"title":"levenberg_marquardt_algorithm.h <span style='color:#111;'> 7.84KB </span>","children":null,"spread":false},{"title":"unscaling_layer.h <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"growing_neurons.h <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false},{"title":"recurrent_layer.h <span style='color:#111;'> 6.70KB </span>","children":null,"spread":false},{"title":"minkowski_error.h <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false},{"title":"sum_squared_error.h <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"mean_squared_error.h <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false},{"title":"principal_components_layer.h <span style='color:#111;'> 4.58KB </span>","children":null,"spread":false},{"title":"correlations.h <span style='color:#111;'> 8.26KB </span>","children":null,"spread":false},{"title":"neural_network.h <span style='color:#111;'> 11.00KB </span>","children":null,"spread":false},{"title":"normalized_squared_error.h <span style='color:#111;'> 3.96KB </span>","children":null,"spread":false},{"title":"unit_testing.h <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"opennn.h <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"stochastic_gradient_descent.h <span style='color:#111;'> 6.53KB </span>","children":null,"spread":false},{"title":"optimization_algorithm.h <span style='color:#111;'> 8.02KB </span>","children":null,"spread":false},{"title":"opennn_strings.h <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"weighted_squared_error.h <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"neurons_selection.h <span style='color:#111;'> 6.94KB </span>","children":null,"spread":false},{"title":"long_short_term_memory_layer.h <span style='color:#111;'> 19.82KB </span>","children":null,"spread":false},{"title":"adaptive_moment_estimation.h <span style='color:#111;'> 5.63KB </span>","children":null,"spread":false},{"title":"testing_analysis.h <span style='color:#111;'> 12.31KB </span>","children":null,"spread":false},{"title":"model_selection.h <span style='color:#111;'> 4.47KB </span>","children":null,"spread":false},{"title":"layer.h <span style='color:#111;'> 15.69KB </span>","children":null,"spread":false},{"title":"statistics.h <span style='color:#111;'> 8.87KB </span>","children":null,"spread":false},{"title":"tinyxml2.h <span style='color:#111;'> 67.10KB </span>","children":null,"spread":false},{"title":"growing_inputs.h <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false},{"title":"genetic_algorithm.h <span style='color:#111;'> 8.72KB </span>","children":null,"spread":false},{"title":"pruning_inputs.h <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false},{"title":"data_set.h <span style='color:#111;'> 27.18KB </span>","children":null,"spread":false},{"title":"response_optimization.h <span style='color:#111;'> 4.87KB </span>","children":null,"spread":false},{"title":"training_strategy.h <span style='color:#111;'> 7.54KB </span>","children":null,"spread":false},{"title":"numerical_differentiation.h <span style='color:#111;'> 123.49KB </span>","children":null,"spread":false}],"spread":false},{"title":"lib","children":[{"title":"opennn.lib <span style='color:#111;'> 47.48MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明