吴恩达深度学习资料.zip

上传者: 43860634 | 上传时间: 2025-10-09 21:59:57 | 文件大小: 154.3MB | 文件类型: ZIP
吴恩达是人工智能领域中享有盛名的学者,其深度学习资料对学习和研究深度学习有着重要的意义。这些资料通常包含了深度学习的理论知识、应用实例以及实践操作的详细说明,是初学者和专业人士深入研究深度学习不可或缺的学习资源。 从吴恩达深度学习资料中,我们可以了解到深度学习的基本概念和原理,包括神经网络的结构、前向传播和反向传播算法、损失函数、优化器以及正则化技术等。通过这些资料,学习者能够掌握如何构建和训练简单的神经网络,并进一步理解卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等高级神经网络结构在图像识别、自然语言处理、语音识别等领域的应用。 此外,吴恩达的深度学习课程资料通常会提供丰富的案例研究,这些案例不仅涉及了传统深度学习应用,还包括了深度强化学习、生成对抗网络(GAN)、自编码器等前沿研究主题。通过对案例的学习,学习者可以深入理解深度学习在解决实际问题中的思路和方法,并能够应用所学知识去解决现实世界中的问题。 吴恩达深度学习资料还包括了编程实践,比如使用TensorFlow、PyTorch等流行的深度学习框架进行编程。这些实践环节对于培养学习者的动手能力和解决复杂问题的能力至关重要。学习者通过亲自编写代码来构建模型,可以加深对深度学习算法的理解,并能够快速适应深度学习项目的需求。 深度学习领域不断在进步和更新,吴恩达的资料往往还会包括最新的研究成果和行业动态。这些内容可以帮助学习者把握深度学习的发展趋势,理解未来技术发展的方向,为学习者提供了宝贵的知识拓展和职业发展规划的参考。 吴恩达的深度学习资料为学习者提供了一套系统的深度学习知识框架,不仅包含基础理论和核心概念,还涵盖了实践操作和最新研究成果,是学习深度学习的宝贵资源。通过这些资料的学习,学习者将能够打下坚实的深度学习基础,并在人工智能领域中不断探索和创新。

文件下载

资源详情

[{"title":"( 1065 个子文件 154.3MB ) 吴恩达深度学习资料.zip","children":[{"title":".gitignore <span style='color:#111;'> 5B </span>","children":null,"spread":false},{"title":"math.html <span style='color:#111;'> 4.21MB </span>","children":null,"spread":false},{"title":"lesson1-week2.html <span style='color:#111;'> 2.65MB </span>","children":null,"spread":false},{"title":"lesson5-week1.html <span style='color:#111;'> 1.68MB </span>","children":null,"spread":false},{"title":"lesson2-week3.html <span style='color:#111;'> 1.48MB </span>","children":null,"spread":false},{"title":"lesson1-week3.html <span style='color:#111;'> 1.42MB </span>","children":null,"spread":false},{"title":"lesson2-week1.html <span style='color:#111;'> 1.29MB </span>","children":null,"spread":false},{"title":"lesson2-week2.html <span style='color:#111;'> 1.27MB </span>","children":null,"spread":false},{"title":"lesson4-week4.html <span style='color:#111;'> 1.02MB </span>","children":null,"spread":false},{"title":"lesson5-week2.html <span style='color:#111;'> 889.28KB </span>","children":null,"spread":false},{"title":"lesson4-week1.html <span style='color:#111;'> 807.97KB </span>","children":null,"spread":false},{"title":"lesson4-week3.html <span style='color:#111;'> 739.36KB </span>","children":null,"spread":false},{"title":"lesson1-week4.html <span style='color:#111;'> 675.35KB </span>","children":null,"spread":false},{"title":"lesson5-week3.html <span style='color:#111;'> 644.89KB </span>","children":null,"spread":false},{"title":"lesson3-week2.html <span style='color:#111;'> 368.34KB </span>","children":null,"spread":false},{"title":"lesson4-week2.html <span style='color:#111;'> 350.27KB </span>","children":null,"spread":false},{"title":"lesson3-week1.html <span style='color:#111;'> 325.51KB </span>","children":null,"spread":false},{"title":"notation.html <span style='color:#111;'> 176.01KB </span>","children":null,"spread":false},{"title":"interview.html <span style='color:#111;'> 133.41KB </span>","children":null,"spread":false},{"title":"lesson1-week1.html <span style='color:#111;'> 91.07KB </span>","children":null,"spread":false},{"title":"SUMMARY.html <span style='color:#111;'> 31.81KB </span>","children":null,"spread":false},{"title":"README.html <span style='color:#111;'> 20.86KB </span>","children":null,"spread":false},{"title":"14d6a403472dd79bdab9f7bd8e74bf75.jpg <span style='color:#111;'> 63.91KB </span>","children":null,"spread":false},{"title":"6403f00e5844c3100f4aa9ff043e2319.jpg <span style='color:#111;'> 43.78KB </span>","children":null,"spread":false},{"title":"505663d02e8120e30c3d8405f31a8497.jpg <span style='color:#111;'> 33.93KB </span>","children":null,"spread":false},{"title":"L1_week3_9.jpg <span style='color:#111;'> 30.14KB </span>","children":null,"spread":false},{"title":"dd9dc6d164ca059f7996a6cbf58997a5.jpg <span style='color:#111;'> 26.83KB </span>","children":null,"spread":false},{"title":"03f5f96177ab15d5ead8298ba50300ac.jpg <span style='color:#111;'> 26.40KB </span>","children":null,"spread":false},{"title":"08a2f8fea114cbc35c70d45d03a34d52.jpg <span style='color:#111;'> 21.54KB </span>","children":null,"spread":false},{"title":"cbd5ff8c461fcb5a699c4ec4789687b3.jpg <span style='color:#111;'> 17.44KB </span>","children":null,"spread":false},{"title":"fe20e8766346d4e8d212e792888dd6fb.jpg <span style='color:#111;'> 13.67KB </span>","children":null,"spread":false},{"title":"bb909b874b2865e66eaf9a5d18cc00e5.jpg <span style='color:#111;'> 11.37KB </span>","children":null,"spread":false},{"title":"cbow.jpg <span style='color:#111;'> 11.37KB </span>","children":null,"spread":false},{"title":"skipgram.jpg <span style='color:#111;'> 11.36KB </span>","children":null,"spread":false},{"title":"c5eda5608fd2f4d846559ed8e89ed33c.jpg <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"1b79cca8e1902f0ee24b4eb966755ddd.jpg <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"0ad6c298d0ac25ca9b26546bb06d462c.jpg <span style='color:#111;'> 11.06KB </span>","children":null,"spread":false},{"title":"a3c81d2c8629d674141def47dc02f312.jpg <span style='color:#111;'> 10.72KB </span>","children":null,"spread":false},{"title":"4fb3b91114ecb2cd81ec9f3662434d81.jpg <span style='color:#111;'> 7.75KB </span>","children":null,"spread":false},{"title":"6cdef1989a113fc1caaaaf6ebaaa3549.jpg <span style='color:#111;'> 6.97KB </span>","children":null,"spread":false},{"title":"zhishixingqiu1.jpg <span style='color:#111;'> 6.87KB </span>","children":null,"spread":false},{"title":"27be50001e7a91bd2abaaeaf7aba7cd4.jpg <span style='color:#111;'> 6.78KB </span>","children":null,"spread":false},{"title":"gongzhong.jpg <span style='color:#111;'> 6.64KB </span>","children":null,"spread":false},{"title":"21541fc771ad8895c18d292dd4734fe7.jpg <span style='color:#111;'> 6.38KB </span>","children":null,"spread":false},{"title":"5300d40870ec58cb0b8162747b9559b9.jpg <span style='color:#111;'> 6.13KB </span>","children":null,"spread":false},{"title":"579fb3957063480420c6a7d294503e97.jpg <span style='color:#111;'> 5.85KB </span>","children":null,"spread":false},{"title":"af11ecd5d72c85f777592f8660678ce6.jpg <span style='color:#111;'> 5.05KB </span>","children":null,"spread":false},{"title":"60cc674531ac72b2d75b0c447db95e96.jpg <span style='color:#111;'> 3.41KB </span>","children":null,"spread":false},{"title":"236774be30d12524a2002c3c484d22d5.jpg <span style='color:#111;'> 3.36KB </span>","children":null,"spread":false},{"title":"interview.md <span style='color:#111;'> 108.69KB </span>","children":null,"spread":false},{"title":"lesson3-week2.md <span style='color:#111;'> 93.12KB </span>","children":null,"spread":false},{"title":"lesson5-week1.md <span style='color:#111;'> 88.13KB </span>","children":null,"spread":false},{"title":"lesson1-week2.md <span style='color:#111;'> 87.82KB </span>","children":null,"spread":false},{"title":"lesson5-week2.md <span style='color:#111;'> 84.24KB </span>","children":null,"spread":false},{"title":"lesson2-week1.md <span style='color:#111;'> 80.46KB </span>","children":null,"spread":false},{"title":"lesson2-week3.md <span style='color:#111;'> 79.44KB </span>","children":null,"spread":false},{"title":"lesson5-week3.md <span style='color:#111;'> 78.95KB </span>","children":null,"spread":false},{"title":"lesson4-week2.md <span style='color:#111;'> 75.31KB </span>","children":null,"spread":false},{"title":"lesson4-week1.md <span style='color:#111;'> 75.27KB </span>","children":null,"spread":false},{"title":"lesson3-week1.md <span style='color:#111;'> 69.03KB </span>","children":null,"spread":false},{"title":"lesson4-week3.md <span style='color:#111;'> 64.60KB </span>","children":null,"spread":false},{"title":"lesson4-week4.md <span style='color:#111;'> 62.65KB </span>","children":null,"spread":false},{"title":"lesson2-week2.md <span style='color:#111;'> 54.03KB </span>","children":null,"spread":false},{"title":"math.md <span style='color:#111;'> 47.46KB </span>","children":null,"spread":false},{"title":"lesson1-week3.md <span style='color:#111;'> 46.96KB </span>","children":null,"spread":false},{"title":"lesson1-week4.md <span style='color:#111;'> 30.19KB </span>","children":null,"spread":false},{"title":"lesson1-week1.md <span style='color:#111;'> 29.23KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 17.31KB </span>","children":null,"spread":false},{"title":"SUMMARY.md <span style='color:#111;'> 13.09KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4.13KB </span>","children":null,"spread":false},{"title":"notation.md <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 722B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 350B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 178B </span>","children":null,"spread":false},{"title":"Deeplearning深度学习笔记v5.71.pdf <span style='color:#111;'> 26.10MB </span>","children":null,"spread":false},{"title":"Ren 等。 - 2015 - Faster R-CNN towards real-time object detection w.pdf <span style='color:#111;'> 6.59MB </span>","children":null,"spread":false},{"title":"Gatys 等。 - 2015 - A Neural Algorithm of Artistic Style.pdf <span style='color:#111;'> 5.83MB </span>","children":null,"spread":false},{"title":"Uijlings 等。 - 2013 - Selective Search for Object Recognition.pdf <span style='color:#111;'> 5.66MB </span>","children":null,"spread":false},{"title":"Redmon 等。 - 2015 - You Only Look Once Unified, Real-Time Object Dete.pdf <span style='color:#111;'> 5.05MB </span>","children":null,"spread":false},{"title":"Redmon 和 Farhadi - 2016 - YOLO9000 Better, Faster, Stronger.pdf <span style='color:#111;'> 5.01MB </span>","children":null,"spread":false},{"title":"Schroff 等。 - 2015 - FaceNet A Unified Embedding for Face Recognition .pdf <span style='color:#111;'> 4.49MB </span>","children":null,"spread":false},{"title":"Girshick 等。 - 2014 - Rich Feature Hierarchies for Accurate Object Detec.pdf <span style='color:#111;'> 2.63MB </span>","children":null,"spread":false},{"title":"Farhadi - YOLOv3 An Incremental Improvement.pdf <span style='color:#111;'> 2.29MB </span>","children":null,"spread":false},{"title":"Zeiler 和 Fergus - 2014 - Visualizing and Understanding Convolutional Networ.pdf <span style='color:#111;'> 2.25MB </span>","children":null,"spread":false},{"title":"deepface-closing-the-gap-to-human-level-performance-in-face-verification.pdf <span style='color:#111;'> 1.98MB </span>","children":null,"spread":false},{"title":"He 等。 - 2016 - Identity Mappings in Deep Residual Networks.pdf <span style='color:#111;'> 1.10MB </span>","children":null,"spread":false},{"title":"Sermanet 等。 - 2013 - Overfeat Integrated recognition, localization and.pdf <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false},{"title":"He 等。 - 2015 - Deep Residual Learning for Image Recognition.pdf <span style='color:#111;'> 800.18KB </span>","children":null,"spread":false},{"title":"Bolukbasi 等。 - Man is to Computer Programmer as Woman is to Homem.pdf <span style='color:#111;'> 753.84KB </span>","children":null,"spread":false},{"title":"Girshick - 2015 - Fast r-cnn.pdf <span style='color:#111;'> 713.99KB </span>","children":null,"spread":false},{"title":"Chung 等。 - 2014 - Empirical Evaluation of Gated Recurrent Neural Net.pdf <span style='color:#111;'> 667.87KB </span>","children":null,"spread":false},{"title":"Kingma 和 Ba - 2014 - Adam A Method for Stochastic Optimization.pdf <span style='color:#111;'> 570.94KB </span>","children":null,"spread":false},{"title":"Hochreiter 和 Schmidhuber - 1997 - Long Short-Term Memory.pdf <span style='color:#111;'> 450.63KB </span>","children":null,"spread":false},{"title":"Papineni 等。 - 2001 - BLEU a method for automatic evaluation of machine.pdf <span style='color:#111;'> 307.35KB </span>","children":null,"spread":false},{"title":"Cho 等。 - 2014 - On the Properties of Neural Machine Translation E.pdf <span style='color:#111;'> 302.93KB </span>","children":null,"spread":false},{"title":"Graves 等。 - 2006 - Connectionist temporal classification labelling u.pdf <span style='color:#111;'> 299.91KB </span>","children":null,"spread":false},{"title":"Mikolov 等。 - 2013 - Efficient Estimation of Word Representations in Ve.pdf <span style='color:#111;'> 245.58KB </span>","children":null,"spread":false},{"title":"Daumé - 2009 - Unsupervised search-based structured prediction.pdf <span style='color:#111;'> 227.53KB </span>","children":null,"spread":false},{"title":"Simonyan 和 Zisserman - 2014 - Very Deep Convolutional Networks for Large-Scale I.pdf <span style='color:#111;'> 195.32KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明