自然语言处理-原理、方法与应用(计算机技术开发与应用丛书)配套源码

上传者: 44132287 | 上传时间: 2025-07-10 20:19:58 | 文件大小: 4.18MB | 文件类型: ZIP
自然语言处理(NLP)是计算机科学、人工智能和语言学领域的一个交叉学科,旨在使计算机能够理解、解释和生成人类语言。近年来,随着深度学习技术的发展,NLP领域取得了显著的进步。深度学习,特别是神经网络的应用,已成为推动NLP技术革新和落地应用的关键因素。 神经网络是一种模拟人脑工作方式的计算模型,它通过大量的数据进行训练,从而能够自动提取特征并进行模式识别。在NLP中,深度神经网络被用来处理各种语言任务,包括语言模型构建、机器翻译、文本分类、情感分析、语音识别和文本生成等。 神经网络在NLP中的应用,可以概括为以下几个方面: 1. 词嵌入(Word Embedding):通过训练深度学习模型,将词汇转换为连续的向量空间中的点,从而使语义上相似的词汇在向量空间中也相近。著名的词嵌入模型有Word2Vec和GloVe。 2. 循环神经网络(RNN):RNN及其变体长短期记忆网络(LSTM)和门控循环单元(GRU)在处理序列数据方面表现出色,非常适合处理文本数据。它们在语言模型、序列标注、文本生成等任务中得到了广泛应用。 3. 卷积神经网络(CNN):虽然最初是为了图像处理设计的,但CNN也被证明在文本分类和信息抽取任务中非常有效。通过模拟视觉感知机制,CNN能够捕捉文本中的局部特征。 4. 注意力机制(Attention Mechanism):注意力机制使得模型能够在一个序列的不同部分分配不同的权重,这在机器翻译、文本摘要等任务中表现出了显著的优势。 5. Transformer模型:基于注意力机制,Transformer模型完全摒弃了传统的循环结构,采用自注意力(Self-Attention)和位置编码(Positional Encoding),在序列到序列的任务中取得了突破性的效果。BERT、GPT等基于Transformer的预训练语言模型已经在NLP领域引起了巨大的变革。 配套源码中可能包含的资源可以分为几个主要部分: 1. 实现各种NLP任务的代码:包括但不限于文本分类、情感分析、命名实体识别等。 2. 预训练模型的加载和使用:提供加载预训练模型的代码,便于开发者在具体任务中进行微调。 3. 数据处理和预处理工具:数据是深度学习模型训练的基础,配套源码应该包含数据清洗、向量化、批处理等功能。 4. 训练脚本和模型评估工具:提供训练神经网络模型的脚本以及评估模型性能的指标计算方法。 5. 可视化工具:可能包含的可视化工具能够帮助开发者观察模型训练过程中的性能变化,以及分析模型的预测结果。 自然语言处理的原理、方法与应用的研究和实践,通过这些深度学习技术的应用,已经渗透到我们的日常生活中,如智能助手、自动翻译、聊天机器人等。随着技术的不断演进,自然语言处理将继续拓展其应用边界,深入影响人类的生活方式和工作模式。

文件下载

资源详情

[{"title":"( 103 个子文件 4.18MB ) 自然语言处理-原理、方法与应用(计算机技术开发与应用丛书)配套源码","children":[{"title":"config-feedforward <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"Digraph.gv <span style='color:#111;'> 1.00KB </span>","children":null,"spread":false},{"title":"CCF_ner.iml <span style='color:#111;'> 591B </span>","children":null,"spread":false},{"title":"4_7_2_MLP_Text.ipynb <span style='color:#111;'> 563.90KB </span>","children":null,"spread":false},{"title":"4_7_3_CNN_text.ipynb <span style='color:#111;'> 562.81KB </span>","children":null,"spread":false},{"title":"xor.ipynb <span style='color:#111;'> 348.72KB </span>","children":null,"spread":false},{"title":"4_7_5_AutoEncoder.ipynb <span style='color:#111;'> 305.85KB </span>","children":null,"spread":false},{"title":"3_4_Basis_high_ranking.ipynb <span style='color:#111;'> 159.55KB </span>","children":null,"spread":false},{"title":"4_7_6_stock_trend_predict.ipynb <span style='color:#111;'> 136.75KB </span>","children":null,"spread":false},{"title":"5_3_GAN.ipynb <span style='color:#111;'> 112.88KB </span>","children":null,"spread":false},{"title":"4_7_1_MLP.ipynb <span style='color:#111;'> 60.16KB </span>","children":null,"spread":false},{"title":"7_3_Transfer_learning_cnn_image.ipynb <span style='color:#111;'> 54.33KB </span>","children":null,"spread":false},{"title":"4_7_4_Tradition_cnn_image.ipynb <span style='color:#111;'> 48.95KB </span>","children":null,"spread":false},{"title":"6_1_4_EDEN.ipynb <span style='color:#111;'> 29.97KB </span>","children":null,"spread":false},{"title":"3_3_Basis_Advance.ipynb <span style='color:#111;'> 12.58KB </span>","children":null,"spread":false},{"title":"3_2_Basis.ipynb <span style='color:#111;'> 10.64KB </span>","children":null,"spread":false},{"title":"xor-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"知乎.jpg <span style='color:#111;'> 207.04KB </span>","children":null,"spread":false},{"title":"合体收款.jpg <span style='color:#111;'> 139.13KB </span>","children":null,"spread":false},{"title":"B站二维码.JPG <span style='color:#111;'> 132.88KB </span>","children":null,"spread":false},{"title":"扫一扫微信.jpg <span style='color:#111;'> 91.30KB </span>","children":null,"spread":false},{"title":"微信二维码.jpg <span style='color:#111;'> 26.85KB </span>","children":null,"spread":false},{"title":"README.MD <span style='color:#111;'> 6.36KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.65KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-104 <span style='color:#111;'> 116.15KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-109 <span style='color:#111;'> 122.25KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-114 <span style='color:#111;'> 128.74KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-119 <span style='color:#111;'> 135.23KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-124 <span style='color:#111;'> 135.17KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-14 <span style='color:#111;'> 57.48KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-19 <span style='color:#111;'> 58.01KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-24 <span style='color:#111;'> 30.33KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-29 <span style='color:#111;'> 36.68KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-34 <span style='color:#111;'> 43.73KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-39 <span style='color:#111;'> 47.86KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-4 <span style='color:#111;'> 56.66KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-44 <span style='color:#111;'> 53.47KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-49 <span style='color:#111;'> 60.76KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-54 <span style='color:#111;'> 69.04KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-59 <span style='color:#111;'> 80.62KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-64 <span style='color:#111;'> 87.59KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-69 <span style='color:#111;'> 92.21KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-74 <span style='color:#111;'> 98.59KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-79 <span style='color:#111;'> 108.61KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-84 <span style='color:#111;'> 121.09KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-89 <span style='color:#111;'> 122.85KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-9 <span style='color:#111;'> 57.06KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-94 <span style='color:#111;'> 130.61KB </span>","children":null,"spread":false},{"title":"neat-checkpoint-99 <span style='color:#111;'> 110.61KB </span>","children":null,"spread":false},{"title":"NULL <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"NULL <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"IDCNN.png <span style='color:#111;'> 74.18KB </span>","children":null,"spread":false},{"title":"章节目录.png <span style='color:#111;'> 46.32KB </span>","children":null,"spread":false},{"title":"动态权重融合.png <span style='color:#111;'> 42.30KB </span>","children":null,"spread":false},{"title":"模型融合.png <span style='color:#111;'> 33.37KB </span>","children":null,"spread":false},{"title":"BILSTM.png <span style='color:#111;'> 25.94KB </span>","children":null,"spread":false},{"title":"Python深度学习体系.png <span style='color:#111;'> 21.89KB </span>","children":null,"spread":false},{"title":"文本长度统计.png <span style='color:#111;'> 17.63KB </span>","children":null,"spread":false},{"title":"bert_modeling.py <span style='color:#111;'> 48.30KB </span>","children":null,"spread":false},{"title":"preprocess.py <span style='color:#111;'> 34.81KB </span>","children":null,"spread":false},{"title":"memory_saving_gradients.py <span style='color:#111;'> 17.11KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 13.16KB </span>","children":null,"spread":false},{"title":"tokenization.py <span style='color:#111;'> 11.97KB </span>","children":null,"spread":false},{"title":"optimization.py <span style='color:#111;'> 11.15KB </span>","children":null,"spread":false},{"title":"train_fine_tune.py <span style='color:#111;'> 10.61KB </span>","children":null,"spread":false},{"title":"ops.py <span style='color:#111;'> 9.92KB </span>","children":null,"spread":false},{"title":"rnncell.py <span style='color:#111;'> 9.25KB </span>","children":null,"spread":false},{"title":"post_ensemble_final_result.py <span style='color:#111;'> 9.24KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 7.39KB </span>","children":null,"spread":false},{"title":"ensemble.py <span style='color:#111;'> 5.95KB </span>","children":null,"spread":false},{"title":"visualize.py <span style='color:#111;'> 5.78KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 4.84KB </span>","children":null,"spread":false},{"title":"get_ensemble_final_result.py <span style='color:#111;'> 2.70KB </span>","children":null,"spread":false},{"title":"xor.py <span style='color:#111;'> 2.27KB </span>","children":null,"spread":false},{"title":"text_result_vote_ensemble.py <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"check_F1.py <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"bert_modeling.cpython-35.pyc <span style='color:#111;'> 32.29KB </span>","children":null,"spread":false},{"title":"bert_modeling.cpython-36.pyc <span style='color:#111;'> 30.62KB </span>","children":null,"spread":false},{"title":"tokenization.cpython-35.pyc <span style='color:#111;'> 22.78KB </span>","children":null,"spread":false},{"title":"tokenization.cpython-36.pyc <span style='color:#111;'> 9.57KB </span>","children":null,"spread":false},{"title":"model.cpython-35.pyc <span style='color:#111;'> 9.48KB </span>","children":null,"spread":false},{"title":"model.cpython-36.pyc <span style='color:#111;'> 8.50KB </span>","children":null,"spread":false},{"title":"train_fine_tune.cpython-35.pyc <span style='color:#111;'> 7.80KB </span>","children":null,"spread":false},{"title":"train_fine_tune.cpython-36.pyc <span style='color:#111;'> 6.89KB </span>","children":null,"spread":false},{"title":"optimization.cpython-35.pyc <span style='color:#111;'> 6.66KB </span>","children":null,"spread":false},{"title":"optimization.cpython-36.pyc <span style='color:#111;'> 6.13KB </span>","children":null,"spread":false},{"title":"utils.cpython-35.pyc <span style='color:#111;'> 6.06KB </span>","children":null,"spread":false},{"title":"utils.cpython-36.pyc <span style='color:#111;'> 5.61KB </span>","children":null,"spread":false},{"title":"visualize.cpython-37.pyc <span style='color:#111;'> 5.26KB </span>","children":null,"spread":false},{"title":"visualize.cpython-36.pyc <span style='color:#111;'> 5.24KB </span>","children":null,"spread":false},{"title":"config.cpython-35.pyc <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"config.cpython-36.pyc <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"speciation.svg <span style='color:#111;'> 726.73KB </span>","children":null,"spread":false},{"title":"avg_fitness.svg <span style='color:#111;'> 42.81KB </span>","children":null,"spread":false},{"title":"Digraph.gv.svg <span style='color:#111;'> 6.17KB </span>","children":null,"spread":false},{"title":"text.txt <span style='color:#111;'> 60B </span>","children":null,"spread":false},{"title":"tx.txt <span style='color:#111;'> 15B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 28.75KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明