[{"title":"( 225 个子文件 139.26MB ) 关节点检测数据集7777","children":[{"title":"测试集预测结果.csv <span style='color:#111;'> 512.88KB </span>","children":null,"spread":false},{"title":"wine.csv <span style='color:#111;'> 291.25KB </span>","children":null,"spread":false},{"title":"wine_old.csv <span style='color:#111;'> 280.65KB </span>","children":null,"spread":false},{"title":"kpt_dataset_eda.csv <span style='color:#111;'> 204.91KB </span>","children":null,"spread":false},{"title":"训练日志-训练集.csv <span style='color:#111;'> 116.96KB </span>","children":null,"spread":false},{"title":"t-SNE-3D.csv <span style='color:#111;'> 85.21KB </span>","children":null,"spread":false},{"title":"UMAP-3D.csv <span style='color:#111;'> 84.38KB </span>","children":null,"spread":false},{"title":"UMAP-2D.csv <span style='color:#111;'> 74.97KB </span>","children":null,"spread":false},{"title":"t-SNE-2D.csv <span style='color:#111;'> 74.54KB </span>","children":null,"spread":false},{"title":"imagenet_class_index.csv <span style='color:#111;'> 36.21KB </span>","children":null,"spread":false},{"title":"各类别准确率评估指标.csv <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"训练日志-测试集.csv <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false},{"title":"数据量统计.csv <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"语义特征t-SNE三维降维plotly可视化.html <span style='color:#111;'> 3.61MB </span>","children":null,"spread":false},{"title":"语义特征UMAP三维降维plotly可视化.html <span style='color:#111;'> 3.61MB </span>","children":null,"spread":false},{"title":"语义特征UMAP二维降维plotly可视化.html <span style='color:#111;'> 3.59MB </span>","children":null,"spread":false},{"title":"语义特征t-SNE二维降维plotly可视化.html <span style='color:#111;'> 3.59MB </span>","children":null,"spread":false},{"title":"【D2】基于DFF的图像子区域可解释性分析-水果图像分类.ipynb <span style='color:#111;'> 23.07MB </span>","children":null,"spread":false},{"title":"【D1】自己训练的水果分类模型-单张图像.ipynb <span style='color:#111;'> 12.60MB </span>","children":null,"spread":false},{"title":"【B2】预测单张图像-中文.ipynb <span style='color:#111;'> 12.22MB </span>","children":null,"spread":false},{"title":"【C1】Pytorch预训练ImageNet图像分类-单张图像.ipynb <span style='color:#111;'> 11.52MB </span>","children":null,"spread":false},{"title":"【B1】预测单张图像-英文.ipynb <span style='color:#111;'> 11.20MB </span>","children":null,"spread":false},{"title":"【D1】基于DFF的图像子区域可解释性分析-ImageNet图像分类.ipynb <span style='color:#111;'> 11.15MB </span>","children":null,"spread":false},{"title":"【C1】LIME可解释性分析-ImageNet图像分类.ipynb <span style='color:#111;'> 6.08MB </span>","children":null,"spread":false},{"title":"【B1】Grad-CAM热力图可解释性分析.ipynb <span style='color:#111;'> 5.52MB </span>","children":null,"spread":false},{"title":"【B】预测新图像.ipynb <span style='color:#111;'> 4.71MB </span>","children":null,"spread":false},{"title":"【D2】GradientShap可解释性分析-自己训练的水果分类模型.ipynb <span style='color:#111;'> 4.40MB </span>","children":null,"spread":false},{"title":"【B】torchcam命令行.ipynb <span style='color:#111;'> 2.49MB </span>","children":null,"spread":false},{"title":"【D2】Tensorflow-预训练ResNet50可解释性分析.ipynb <span style='color:#111;'> 2.40MB </span>","children":null,"spread":false},{"title":"【C3】Pytorch预训练ImageNet图像分类-摄像头实时画面.ipynb <span style='color:#111;'> 2.20MB </span>","children":null,"spread":false},{"title":"【D3】自己训练的水果分类模型-摄像头实时画面.ipynb <span style='color:#111;'> 2.11MB </span>","children":null,"spread":false},{"title":"【B1】遮挡可解释性分析-ImageNet图像分类.ipynb <span style='color:#111;'> 1.95MB </span>","children":null,"spread":false},{"title":"【C1】Integrated Gradients可解释性分析-预训练模型.ipynb <span style='color:#111;'> 1.92MB </span>","children":null,"spread":false},{"title":"【D1】GradientShap可解释性分析-预训练模型.ipynb <span style='color:#111;'> 1.73MB </span>","children":null,"spread":false},{"title":"【B】葡萄酒二分类-lime可解释性分析.ipynb <span style='color:#111;'> 1.65MB </span>","children":null,"spread":false},{"title":"【H3】测试集语义特征UMAP降维可视化.ipynb <span style='color:#111;'> 1.60MB </span>","children":null,"spread":false},{"title":"【H2】测试集语义特征t-SNE降维可视化.ipynb <span style='color:#111;'> 1.47MB </span>","children":null,"spread":false},{"title":"【D】关键点检测数据集挖掘探索可视化.ipynb <span style='color:#111;'> 1.44MB </span>","children":null,"spread":false},{"title":"【C2】Integrated Gradients可解释性分析-自己训练的水果分类模型.ipynb <span style='color:#111;'> 1.25MB </span>","children":null,"spread":false},{"title":"【D1】预测摄像头实时画面-英文.ipynb <span style='color:#111;'> 1.24MB </span>","children":null,"spread":false},{"title":"【B2】遮挡可解释性分析-自己训练的水果分类模型.ipynb <span style='color:#111;'> 1.16MB </span>","children":null,"spread":false},{"title":"【D2】预测摄像头实时画面-中文.ipynb <span style='color:#111;'> 1.15MB </span>","children":null,"spread":false},{"title":"【C】水果分类-ONNX Runtime部署-摄像头和视频-中文.ipynb <span style='color:#111;'> 1.12MB </span>","children":null,"spread":false},{"title":"【D】预测摄像头实时画面-中文.ipynb <span style='color:#111;'> 1.09MB </span>","children":null,"spread":false},{"title":"【E1】可视化文件夹中的图像.ipynb <span style='color:#111;'> 800.52KB </span>","children":null,"spread":false},{"title":"【E】Feature Ablation特征消融可解释性分析.ipynb <span style='color:#111;'> 728.37KB </span>","children":null,"spread":false},{"title":"【D1】Pytorch-预训练VGG中间层可解释性分析.ipynb <span style='color:#111;'> 667.18KB </span>","children":null,"spread":false},{"title":"【C1】Pytorch-预训练ImageNet图像分类可解释性分析.ipynb <span style='color:#111;'> 625.21KB </span>","children":null,"spread":false},{"title":"可视化Labelme关键点检测标注.ipynb <span style='color:#111;'> 617.58KB </span>","children":null,"spread":false},{"title":"【C】车流量进区域计数-视频预测.ipynb <span style='color:#111;'> 587.33KB </span>","children":null,"spread":false},{"title":"【C2】LIME可解释性分析-水果图像分类.ipynb <span style='color:#111;'> 580.00KB </span>","children":null,"spread":false},{"title":"【C1】基于Guided Grad-CAM的高分辨率细粒度可解释性分析-ImageNet图像分类.ipynb <span style='color:#111;'> 520.63KB </span>","children":null,"spread":false},{"title":"【C2】Pytorch-水果图像分类可解释性分析.ipynb <span style='color:#111;'> 485.82KB </span>","children":null,"spread":false},{"title":"【D】预测源码解读-预处理+后处理.ipynb <span style='color:#111;'> 477.10KB </span>","children":null,"spread":false},{"title":"【E】混淆矩阵.ipynb <span style='color:#111;'> 439.80KB </span>","children":null,"spread":false},{"title":"【C2】基于Guided Grad-CAM的高分辨率细粒度可解释性分析-水果图像分类.ipynb <span style='color:#111;'> 403.59KB </span>","children":null,"spread":false},{"title":"【D】训练日志和评估指标可视化.ipynb <span style='color:#111;'> 392.68KB </span>","children":null,"spread":false},{"title":"【C1】YOLOV8预训练模型预测-Python API-图像.ipynb <span style='color:#111;'> 374.39KB </span>","children":null,"spread":false},{"title":"【D1】车流越线计数-视频预测-简单场景.ipynb <span style='color:#111;'> 346.02KB </span>","children":null,"spread":false},{"title":"【D2】车流越线计数-视频预测-上海漕河泾.ipynb <span style='color:#111;'> 337.38KB </span>","children":null,"spread":false},{"title":"【C3】YOLOV8预训练模型预测-Python API-摄像头实时画面.ipynb <span style='color:#111;'> 333.56KB </span>","children":null,"spread":false},{"title":"【C1】YOLOV8关键点检测预测-Python API-图像.ipynb <span style='color:#111;'> 333.11KB </span>","children":null,"spread":false},{"title":"【B】Pytorch-MNIST分类可解释性分析.ipynb <span style='color:#111;'> 300.18KB </span>","children":null,"spread":false},{"title":"【C1】ONNX Runtime推理预测-单张图像.ipynb <span style='color:#111;'> 286.63KB </span>","children":null,"spread":false},{"title":"【C2】ONNX Runtime推理预测-摄像头和视频预测.ipynb <span style='color:#111;'> 272.37KB </span>","children":null,"spread":false},{"title":"【B3】ONNX模型预测-Python API-摄像头实时画面.ipynb <span style='color:#111;'> 266.87KB </span>","children":null,"spread":false},{"title":"【D】可视化训练日志.ipynb <span style='color:#111;'> 262.45KB </span>","children":null,"spread":false},{"title":"【E】用底层API实现摄像头和视频预测.ipynb <span style='color:#111;'> 257.99KB </span>","children":null,"spread":false},{"title":"【C1】ImageNet-ONNX Runtime部署-摄像头和视频-英文.ipynb <span style='color:#111;'> 252.43KB </span>","children":null,"spread":false},{"title":"【C3】YOLOV8关键点检测预测-Python API-摄像头实时画面.ipynb <span style='color:#111;'> 250.33KB </span>","children":null,"spread":false},{"title":"【C1】迁移学习微调训练-基础版.ipynb <span style='color:#111;'> 247.07KB </span>","children":null,"spread":false},{"title":"【F1】PR曲线.ipynb <span style='color:#111;'> 239.52KB </span>","children":null,"spread":false},{"title":"【F2】ROC曲线.ipynb <span style='color:#111;'> 207.31KB </span>","children":null,"spread":false},{"title":"【B2】LayerCAM热力图可解释性分析.ipynb <span style='color:#111;'> 171.57KB </span>","children":null,"spread":false},{"title":"【E2】统计各类别图像数量.ipynb <span style='color:#111;'> 145.71KB </span>","children":null,"spread":false},{"title":"【C2】ImageNet-ONNX Runtime部署-摄像头和视频-中文.ipynb <span style='color:#111;'> 144.77KB </span>","children":null,"spread":false},{"title":"【G】绘制各类别准确率评估指标柱状图.ipynb <span style='color:#111;'> 108.26KB </span>","children":null,"spread":false},{"title":"【B2】图像采集(备用).ipynb <span style='color:#111;'> 94.25KB </span>","children":null,"spread":false},{"title":"【B1】Pytorch转ONNX模型.ipynb <span style='color:#111;'> 82.23KB </span>","children":null,"spread":false},{"title":"【C2】统计图像尺寸、比例分布.ipynb <span style='color:#111;'> 53.86KB </span>","children":null,"spread":false},{"title":"【A】安装配置环境.ipynb <span style='color:#111;'> 49.85KB </span>","children":null,"spread":false},{"title":"【D】测试集总体准确率评估指标.ipynb <span style='color:#111;'> 46.73KB </span>","children":null,"spread":false},{"title":"【C】测试集图像分类预测结果.ipynb <span style='color:#111;'> 46.35KB </span>","children":null,"spread":false},{"title":"【A】安装配置环境.ipynb <span style='color:#111;'> 46.08KB </span>","children":null,"spread":false},{"title":"【A】安装配置环境.ipynb <span style='color:#111;'> 44.02KB </span>","children":null,"spread":false},{"title":"【A】安装配置环境.ipynb <span style='color:#111;'> 43.89KB </span>","children":null,"spread":false},{"title":"【A】安装配置环境.ipynb <span style='color:#111;'> 40.38KB </span>","children":null,"spread":false},{"title":"【C2】迁移学习微调训练-进阶版.ipynb <span style='color:#111;'> 39.97KB </span>","children":null,"spread":false},{"title":"【C】预测视频文件-中文.ipynb <span style='color:#111;'> 37.26KB </span>","children":null,"spread":false},{"title":"【A】安装配置环境.ipynb <span style='color:#111;'> 30.50KB </span>","children":null,"spread":false},{"title":"【D】划分训练集测试集.ipynb <span style='color:#111;'> 28.74KB </span>","children":null,"spread":false},{"title":"【A】安装配置环境.ipynb <span style='color:#111;'> 27.12KB </span>","children":null,"spread":false},{"title":"【C】汇总labelme标注信息-所有labelme标注文件.ipynb <span style='color:#111;'> 25.77KB </span>","children":null,"spread":false},{"title":"【B】汇总labelme标注信息-单个labelme标注文件.ipynb <span style='color:#111;'> 21.77KB </span>","children":null,"spread":false},{"title":"【B1】图像采集(首选).ipynb <span style='color:#111;'> 21.50KB </span>","children":null,"spread":false},{"title":"【A】安装配置环境.ipynb <span style='color:#111;'> 18.12KB </span>","children":null,"spread":false},{"title":"【H1】计算测试集图像语义特征.ipynb <span style='color:#111;'> 16.61KB </span>","children":null,"spread":false},{"title":"【C2】YOLOV8预训练模型预测-Python API-视频.ipynb <span style='color:#111;'> 15.88KB </span>","children":null,"spread":false},{"title":"【C2】预测视频文件-中文.ipynb <span style='color:#111;'> 15.09KB </span>","children":null,"spread":false},{"title":"【C2】YOLOV8预训练模型预测-Python API-视频.ipynb <span style='color:#111;'> 12.59KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]