关节点检测数据集7777

上传者: 45783508 | 上传时间: 2025-06-07 18:24:30 | 文件大小: 139.26MB | 文件类型: ZIP
在IT行业中,数据集是机器学习和计算机视觉领域不可或缺的一部分,它们用于训练和评估各种算法。"关节点检测数据集7777"显然是一种专门针对人体关节点检测任务的数据集合,这种数据集通常包含大量的图像,每张图像中都标注了人体各部位的关键点位置。这些关键点可能包括但不限于头颈、肩部、肘部、腕部、腰部、臀部、膝部和脚踝等。 关节点检测是计算机视觉中的一个重要课题,它在人体姿态估计、动作识别、人机交互等领域有广泛的应用。这个数据集可能被设计用来帮助开发和优化深度学习模型,如卷积神经网络(CNN)和循环神经网络(RNN),以及更复杂的方法如图神经网络(GNN)和单阶段或两阶段检测器(如YOLO, Mask R-CNN)。 训练模型时,数据集的构成至关重要。"Train_Custom_Dataset-main"这个文件名暗示了数据集的主要部分可能是训练数据,可能还包括验证集或测试集。训练集用于教模型识别模式,验证集用于调整模型参数(超参数调优),而测试集则在模型完成训练后用于评估其性能。 数据集的创建通常涉及以下步骤: 1. 数据收集:从不同来源获取多元化的图像,确保覆盖各种人体姿态、角度、光照条件和背景。 2. 数据标注:专业人员或自动化工具对图像中的人体关节点进行精确标注。 3. 数据预处理:可能包括图像归一化、尺度变换、色彩空间转换等,以便模型能更好地学习特征。 4. 划分数据集:将数据集划分为训练、验证和测试集,保持比例合理,如80%为训练,10%为验证,10%为测试。 在训练模型时,需要注意过拟合和欠拟合的问题。过拟合发生于模型过于复杂,对训练数据拟合过度,导致泛化能力下降;欠拟合则是因为模型简单,无法捕捉数据集的复杂性。通过正则化、早停策略、dropout等技术可以防止过拟合,而增加模型复杂度或训练时间可能有助于解决欠拟合。 评估模型性能通常使用指标如平均精度均值(mAP)、准确率、召回率和F1分数等。在人体关节点检测中,关键点的坐标误差也是重要评估标准。为了持续优化模型,可以进行模型融合、迁移学习或利用更多数据进行增量训练。 "关节点检测数据集7777"是一个专门针对人体关键点检测的任务,用于训练和评估AI模型。理解并有效利用这样的数据集对于提升人体姿态估计的准确性和鲁棒性具有重要意义。

文件下载

资源详情

[{"title":"( 225 个子文件 139.26MB ) 关节点检测数据集7777","children":[{"title":"测试集预测结果.csv <span style='color:#111;'> 512.88KB </span>","children":null,"spread":false},{"title":"wine.csv <span style='color:#111;'> 291.25KB </span>","children":null,"spread":false},{"title":"wine_old.csv <span style='color:#111;'> 280.65KB </span>","children":null,"spread":false},{"title":"kpt_dataset_eda.csv <span style='color:#111;'> 204.91KB </span>","children":null,"spread":false},{"title":"训练日志-训练集.csv <span style='color:#111;'> 116.96KB </span>","children":null,"spread":false},{"title":"t-SNE-3D.csv <span style='color:#111;'> 85.21KB </span>","children":null,"spread":false},{"title":"UMAP-3D.csv <span style='color:#111;'> 84.38KB </span>","children":null,"spread":false},{"title":"UMAP-2D.csv <span style='color:#111;'> 74.97KB </span>","children":null,"spread":false},{"title":"t-SNE-2D.csv <span style='color:#111;'> 74.54KB </span>","children":null,"spread":false},{"title":"imagenet_class_index.csv <span style='color:#111;'> 36.21KB </span>","children":null,"spread":false},{"title":"各类别准确率评估指标.csv <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"训练日志-测试集.csv <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false},{"title":"数据量统计.csv <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"语义特征t-SNE三维降维plotly可视化.html <span style='color:#111;'> 3.61MB </span>","children":null,"spread":false},{"title":"语义特征UMAP三维降维plotly可视化.html <span style='color:#111;'> 3.61MB </span>","children":null,"spread":false},{"title":"语义特征UMAP二维降维plotly可视化.html <span style='color:#111;'> 3.59MB </span>","children":null,"spread":false},{"title":"语义特征t-SNE二维降维plotly可视化.html <span style='color:#111;'> 3.59MB </span>","children":null,"spread":false},{"title":"【D2】基于DFF的图像子区域可解释性分析-水果图像分类.ipynb <span style='color:#111;'> 23.07MB </span>","children":null,"spread":false},{"title":"【D1】自己训练的水果分类模型-单张图像.ipynb <span style='color:#111;'> 12.60MB </span>","children":null,"spread":false},{"title":"【B2】预测单张图像-中文.ipynb <span style='color:#111;'> 12.22MB </span>","children":null,"spread":false},{"title":"【C1】Pytorch预训练ImageNet图像分类-单张图像.ipynb <span style='color:#111;'> 11.52MB </span>","children":null,"spread":false},{"title":"【B1】预测单张图像-英文.ipynb <span style='color:#111;'> 11.20MB </span>","children":null,"spread":false},{"title":"【D1】基于DFF的图像子区域可解释性分析-ImageNet图像分类.ipynb <span style='color:#111;'> 11.15MB </span>","children":null,"spread":false},{"title":"【C1】LIME可解释性分析-ImageNet图像分类.ipynb <span style='color:#111;'> 6.08MB </span>","children":null,"spread":false},{"title":"【B1】Grad-CAM热力图可解释性分析.ipynb <span style='color:#111;'> 5.52MB </span>","children":null,"spread":false},{"title":"【B】预测新图像.ipynb <span style='color:#111;'> 4.71MB </span>","children":null,"spread":false},{"title":"【D2】GradientShap可解释性分析-自己训练的水果分类模型.ipynb <span style='color:#111;'> 4.40MB </span>","children":null,"spread":false},{"title":"【B】torchcam命令行.ipynb <span style='color:#111;'> 2.49MB </span>","children":null,"spread":false},{"title":"【D2】Tensorflow-预训练ResNet50可解释性分析.ipynb <span style='color:#111;'> 2.40MB </span>","children":null,"spread":false},{"title":"【C3】Pytorch预训练ImageNet图像分类-摄像头实时画面.ipynb <span style='color:#111;'> 2.20MB </span>","children":null,"spread":false},{"title":"【D3】自己训练的水果分类模型-摄像头实时画面.ipynb <span style='color:#111;'> 2.11MB </span>","children":null,"spread":false},{"title":"【B1】遮挡可解释性分析-ImageNet图像分类.ipynb <span style='color:#111;'> 1.95MB </span>","children":null,"spread":false},{"title":"【C1】Integrated Gradients可解释性分析-预训练模型.ipynb <span style='color:#111;'> 1.92MB </span>","children":null,"spread":false},{"title":"【D1】GradientShap可解释性分析-预训练模型.ipynb <span style='color:#111;'> 1.73MB </span>","children":null,"spread":false},{"title":"【B】葡萄酒二分类-lime可解释性分析.ipynb <span style='color:#111;'> 1.65MB </span>","children":null,"spread":false},{"title":"【H3】测试集语义特征UMAP降维可视化.ipynb <span style='color:#111;'> 1.60MB </span>","children":null,"spread":false},{"title":"【H2】测试集语义特征t-SNE降维可视化.ipynb <span style='color:#111;'> 1.47MB </span>","children":null,"spread":false},{"title":"【D】关键点检测数据集挖掘探索可视化.ipynb <span style='color:#111;'> 1.44MB </span>","children":null,"spread":false},{"title":"【C2】Integrated Gradients可解释性分析-自己训练的水果分类模型.ipynb <span style='color:#111;'> 1.25MB </span>","children":null,"spread":false},{"title":"【D1】预测摄像头实时画面-英文.ipynb <span style='color:#111;'> 1.24MB </span>","children":null,"spread":false},{"title":"【B2】遮挡可解释性分析-自己训练的水果分类模型.ipynb <span style='color:#111;'> 1.16MB </span>","children":null,"spread":false},{"title":"【D2】预测摄像头实时画面-中文.ipynb <span style='color:#111;'> 1.15MB </span>","children":null,"spread":false},{"title":"【C】水果分类-ONNX Runtime部署-摄像头和视频-中文.ipynb <span style='color:#111;'> 1.12MB </span>","children":null,"spread":false},{"title":"【D】预测摄像头实时画面-中文.ipynb <span style='color:#111;'> 1.09MB </span>","children":null,"spread":false},{"title":"【E1】可视化文件夹中的图像.ipynb <span style='color:#111;'> 800.52KB </span>","children":null,"spread":false},{"title":"【E】Feature Ablation特征消融可解释性分析.ipynb <span style='color:#111;'> 728.37KB </span>","children":null,"spread":false},{"title":"【D1】Pytorch-预训练VGG中间层可解释性分析.ipynb <span style='color:#111;'> 667.18KB </span>","children":null,"spread":false},{"title":"【C1】Pytorch-预训练ImageNet图像分类可解释性分析.ipynb <span style='color:#111;'> 625.21KB </span>","children":null,"spread":false},{"title":"可视化Labelme关键点检测标注.ipynb <span style='color:#111;'> 617.58KB </span>","children":null,"spread":false},{"title":"【C】车流量进区域计数-视频预测.ipynb <span style='color:#111;'> 587.33KB </span>","children":null,"spread":false},{"title":"【C2】LIME可解释性分析-水果图像分类.ipynb <span style='color:#111;'> 580.00KB </span>","children":null,"spread":false},{"title":"【C1】基于Guided Grad-CAM的高分辨率细粒度可解释性分析-ImageNet图像分类.ipynb <span style='color:#111;'> 520.63KB </span>","children":null,"spread":false},{"title":"【C2】Pytorch-水果图像分类可解释性分析.ipynb <span style='color:#111;'> 485.82KB </span>","children":null,"spread":false},{"title":"【D】预测源码解读-预处理+后处理.ipynb <span style='color:#111;'> 477.10KB </span>","children":null,"spread":false},{"title":"【E】混淆矩阵.ipynb <span style='color:#111;'> 439.80KB </span>","children":null,"spread":false},{"title":"【C2】基于Guided Grad-CAM的高分辨率细粒度可解释性分析-水果图像分类.ipynb <span style='color:#111;'> 403.59KB </span>","children":null,"spread":false},{"title":"【D】训练日志和评估指标可视化.ipynb <span style='color:#111;'> 392.68KB </span>","children":null,"spread":false},{"title":"【C1】YOLOV8预训练模型预测-Python API-图像.ipynb <span style='color:#111;'> 374.39KB </span>","children":null,"spread":false},{"title":"【D1】车流越线计数-视频预测-简单场景.ipynb <span style='color:#111;'> 346.02KB </span>","children":null,"spread":false},{"title":"【D2】车流越线计数-视频预测-上海漕河泾.ipynb <span style='color:#111;'> 337.38KB </span>","children":null,"spread":false},{"title":"【C3】YOLOV8预训练模型预测-Python API-摄像头实时画面.ipynb <span style='color:#111;'> 333.56KB </span>","children":null,"spread":false},{"title":"【C1】YOLOV8关键点检测预测-Python API-图像.ipynb <span style='color:#111;'> 333.11KB </span>","children":null,"spread":false},{"title":"【B】Pytorch-MNIST分类可解释性分析.ipynb <span style='color:#111;'> 300.18KB </span>","children":null,"spread":false},{"title":"【C1】ONNX Runtime推理预测-单张图像.ipynb <span style='color:#111;'> 286.63KB </span>","children":null,"spread":false},{"title":"【C2】ONNX Runtime推理预测-摄像头和视频预测.ipynb <span style='color:#111;'> 272.37KB </span>","children":null,"spread":false},{"title":"【B3】ONNX模型预测-Python API-摄像头实时画面.ipynb <span style='color:#111;'> 266.87KB </span>","children":null,"spread":false},{"title":"【D】可视化训练日志.ipynb <span style='color:#111;'> 262.45KB </span>","children":null,"spread":false},{"title":"【E】用底层API实现摄像头和视频预测.ipynb <span style='color:#111;'> 257.99KB </span>","children":null,"spread":false},{"title":"【C1】ImageNet-ONNX Runtime部署-摄像头和视频-英文.ipynb <span style='color:#111;'> 252.43KB </span>","children":null,"spread":false},{"title":"【C3】YOLOV8关键点检测预测-Python API-摄像头实时画面.ipynb <span style='color:#111;'> 250.33KB </span>","children":null,"spread":false},{"title":"【C1】迁移学习微调训练-基础版.ipynb <span style='color:#111;'> 247.07KB </span>","children":null,"spread":false},{"title":"【F1】PR曲线.ipynb <span style='color:#111;'> 239.52KB </span>","children":null,"spread":false},{"title":"【F2】ROC曲线.ipynb <span style='color:#111;'> 207.31KB </span>","children":null,"spread":false},{"title":"【B2】LayerCAM热力图可解释性分析.ipynb <span style='color:#111;'> 171.57KB </span>","children":null,"spread":false},{"title":"【E2】统计各类别图像数量.ipynb <span style='color:#111;'> 145.71KB </span>","children":null,"spread":false},{"title":"【C2】ImageNet-ONNX Runtime部署-摄像头和视频-中文.ipynb <span style='color:#111;'> 144.77KB </span>","children":null,"spread":false},{"title":"【G】绘制各类别准确率评估指标柱状图.ipynb <span style='color:#111;'> 108.26KB </span>","children":null,"spread":false},{"title":"【B2】图像采集(备用).ipynb <span style='color:#111;'> 94.25KB </span>","children":null,"spread":false},{"title":"【B1】Pytorch转ONNX模型.ipynb <span style='color:#111;'> 82.23KB </span>","children":null,"spread":false},{"title":"【C2】统计图像尺寸、比例分布.ipynb <span style='color:#111;'> 53.86KB </span>","children":null,"spread":false},{"title":"【A】安装配置环境.ipynb <span style='color:#111;'> 49.85KB </span>","children":null,"spread":false},{"title":"【D】测试集总体准确率评估指标.ipynb <span style='color:#111;'> 46.73KB </span>","children":null,"spread":false},{"title":"【C】测试集图像分类预测结果.ipynb <span style='color:#111;'> 46.35KB </span>","children":null,"spread":false},{"title":"【A】安装配置环境.ipynb <span style='color:#111;'> 46.08KB </span>","children":null,"spread":false},{"title":"【A】安装配置环境.ipynb <span style='color:#111;'> 44.02KB </span>","children":null,"spread":false},{"title":"【A】安装配置环境.ipynb <span style='color:#111;'> 43.89KB </span>","children":null,"spread":false},{"title":"【A】安装配置环境.ipynb <span style='color:#111;'> 40.38KB </span>","children":null,"spread":false},{"title":"【C2】迁移学习微调训练-进阶版.ipynb <span style='color:#111;'> 39.97KB </span>","children":null,"spread":false},{"title":"【C】预测视频文件-中文.ipynb <span style='color:#111;'> 37.26KB </span>","children":null,"spread":false},{"title":"【A】安装配置环境.ipynb <span style='color:#111;'> 30.50KB </span>","children":null,"spread":false},{"title":"【D】划分训练集测试集.ipynb <span style='color:#111;'> 28.74KB </span>","children":null,"spread":false},{"title":"【A】安装配置环境.ipynb <span style='color:#111;'> 27.12KB </span>","children":null,"spread":false},{"title":"【C】汇总labelme标注信息-所有labelme标注文件.ipynb <span style='color:#111;'> 25.77KB </span>","children":null,"spread":false},{"title":"【B】汇总labelme标注信息-单个labelme标注文件.ipynb <span style='color:#111;'> 21.77KB </span>","children":null,"spread":false},{"title":"【B1】图像采集(首选).ipynb <span style='color:#111;'> 21.50KB </span>","children":null,"spread":false},{"title":"【A】安装配置环境.ipynb <span style='color:#111;'> 18.12KB </span>","children":null,"spread":false},{"title":"【H1】计算测试集图像语义特征.ipynb <span style='color:#111;'> 16.61KB </span>","children":null,"spread":false},{"title":"【C2】YOLOV8预训练模型预测-Python API-视频.ipynb <span style='color:#111;'> 15.88KB </span>","children":null,"spread":false},{"title":"【C2】预测视频文件-中文.ipynb <span style='color:#111;'> 15.09KB </span>","children":null,"spread":false},{"title":"【C2】YOLOV8预训练模型预测-Python API-视频.ipynb <span style='color:#111;'> 12.59KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明