机器学习实战(蜥蜴书第三版实战源码).zip

上传者: 47560078 | 上传时间: 2025-10-30 01:11:58 | 文件大小: 60.29MB | 文件类型: ZIP
正文内容: 《机器学习实战(蜥蜴书第三版实战源码).zip》是一个压缩包文件,它包含了与《机器学习实战》第三版图书相关的代码实践材料。文件中的核心内容是基于Python语言的机器学习学习笔记,这些笔记以Jupyter Notebook格式提供。Jupyter Notebook是一个开源的Web应用程序,允许用户创建和共享包含实时代码、方程、可视化和解释文本的文档。 这份资源主要是为了辅助读者更好地理解和掌握机器学习的概念,并通过实际编码的方式加深记忆。实践源码的参考书目是《机器学习实战》的第三版,该书是由多位作者共同撰写的,它提供了机器学习领域的深入介绍,尤其适合那些希望从实践中学习的读者。该书不仅覆盖了理论知识,还强调了如何使用Python进行实际的机器学习项目开发。 《机器学习实战》第三版可能包含了多个机器学习的案例分析,展示了从数据处理、特征选择、模型构建到评估模型性能的整个过程。这些案例可能涵盖了多种算法,包括但不限于监督学习、无监督学习、深度学习以及强化学习等。通过阅读这本书籍,并结合提供的实战源码,读者可以逐步构建起自己的机器学习项目,提高解决实际问题的能力。 在使用这些源码时,读者需要具备一定的Python编程基础,以及对机器学习中常用算法和概念有一定的了解。这些代码文件可能包含了详细的注释,解释了代码的功能和背后的逻辑,有助于读者更好地理解机器学习的每一步是如何实现的。此外,由于Jupyter Notebook的互动性,读者可以在学习过程中实时修改和运行代码,这对于巩固理论知识和提升实际操作能力非常有帮助。 在使用这份资源时,读者还可以参考网络上其他学习者或专家的讨论和笔记,这样的社区支持可以帮助读者在遇到困难时快速找到解决方案。不过,需要注意的是,由于机器学习领域更新迅速,有些代码可能需要根据最新的库版本进行调整,以确保能够顺利运行。 这个压缩包文件是一个宝贵的资源,它不仅包含了详细的机器学习实战代码,还通过Jupyter Notebook的互动学习方式,提供了一种高效的学习路径。对于那些希望深入研究Python机器学习的读者来说,这是一个非常实用的辅助工具。

文件下载

资源详情

[{"title":"( 108 个子文件 60.29MB ) 机器学习实战(蜥蜴书第三版实战源码).zip","children":[{"title":"bashrc.bash <span style='color:#111;'> 89B </span>","children":null,"spread":false},{"title":"config <span style='color:#111;'> 258B </span>","children":null,"spread":false},{"title":"description <span style='color:#111;'> 73B </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":".env <span style='color:#111;'> 33B </span>","children":null,"spread":false},{"title":"exclude <span style='color:#111;'> 240B </span>","children":null,"spread":false},{"title":"breakout.gif <span style='color:#111;'> 108.90KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 163B </span>","children":null,"spread":false},{"title":"Dockerfile.gpu <span style='color:#111;'> 8.42KB </span>","children":null,"spread":false},{"title":"HEAD <span style='color:#111;'> 182B </span>","children":null,"spread":false},{"title":"HEAD <span style='color:#111;'> 182B </span>","children":null,"spread":false},{"title":"HEAD <span style='color:#111;'> 30B </span>","children":null,"spread":false},{"title":"HEAD <span style='color:#111;'> 21B </span>","children":null,"spread":false},{"title":"pack-9533530ac201c5949e1a57cb542e16b4ce6b4c47.idx <span style='color:#111;'> 111.57KB </span>","children":null,"spread":false},{"title":"index <span style='color:#111;'> 8.01KB </span>","children":null,"spread":false},{"title":"08_dimensionality_reduction.ipynb <span style='color:#111;'> 3.97MB </span>","children":null,"spread":false},{"title":"09_unsupervised_learning.ipynb <span style='color:#111;'> 3.68MB </span>","children":null,"spread":false},{"title":"17_autoencoders_gans_and_diffusion_models.ipynb <span style='color:#111;'> 3.38MB </span>","children":null,"spread":false},{"title":"14_deep_computer_vision_with_cnns.ipynb <span style='color:#111;'> 2.89MB </span>","children":null,"spread":false},{"title":"02_end_to_end_machine_learning_project.ipynb <span style='color:#111;'> 1.31MB </span>","children":null,"spread":false},{"title":"15_processing_sequences_using_rnns_and_cnns.ipynb <span style='color:#111;'> 1.24MB </span>","children":null,"spread":false},{"title":"tools_matplotlib.ipynb <span style='color:#111;'> 1.03MB </span>","children":null,"spread":false},{"title":"03_classification.ipynb <span style='color:#111;'> 852.34KB </span>","children":null,"spread":false},{"title":"13_loading_and_preprocessing_data.ipynb <span style='color:#111;'> 810.15KB </span>","children":null,"spread":false},{"title":"04_training_linear_models.ipynb <span style='color:#111;'> 777.45KB </span>","children":null,"spread":false},{"title":"05_support_vector_machines.ipynb <span style='color:#111;'> 633.14KB </span>","children":null,"spread":false},{"title":"11_training_deep_neural_networks.ipynb <span style='color:#111;'> 618.09KB </span>","children":null,"spread":false},{"title":"math_linear_algebra.ipynb <span style='color:#111;'> 609.49KB </span>","children":null,"spread":false},{"title":"math_differential_calculus.ipynb <span style='color:#111;'> 593.09KB </span>","children":null,"spread":false},{"title":"10_neural_nets_with_keras.ipynb <span style='color:#111;'> 460.13KB </span>","children":null,"spread":false},{"title":"tools_pandas.ipynb <span style='color:#111;'> 393.63KB </span>","children":null,"spread":false},{"title":"07_ensemble_learning_and_random_forests.ipynb <span style='color:#111;'> 358.64KB </span>","children":null,"spread":false},{"title":"18_reinforcement_learning.ipynb <span style='color:#111;'> 346.24KB </span>","children":null,"spread":false},{"title":"tools_numpy.ipynb <span style='color:#111;'> 292.22KB </span>","children":null,"spread":false},{"title":"16_nlp_with_rnns_and_attention.ipynb <span style='color:#111;'> 265.48KB </span>","children":null,"spread":false},{"title":"06_decision_trees.ipynb <span style='color:#111;'> 257.25KB </span>","children":null,"spread":false},{"title":"01_the_machine_learning_landscape.ipynb <span style='color:#111;'> 235.03KB </span>","children":null,"spread":false},{"title":"12_custom_models_and_training_with_tensorflow.ipynb <span style='color:#111;'> 200.32KB </span>","children":null,"spread":false},{"title":"19_training_and_deploying_at_scale.ipynb <span style='color:#111;'> 115.89KB </span>","children":null,"spread":false},{"title":"extra_gradient_descent_comparison.ipynb <span style='color:#111;'> 48.71KB </span>","children":null,"spread":false},{"title":"extra_autodiff.ipynb <span style='color:#111;'> 32.22KB </span>","children":null,"spread":false},{"title":"extra_ann_architectures.ipynb <span style='color:#111;'> 20.35KB </span>","children":null,"spread":false},{"title":"index.ipynb <span style='color:#111;'> 5.45KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 9.94KB </span>","children":null,"spread":false},{"title":"main <span style='color:#111;'> 182B </span>","children":null,"spread":false},{"title":"main <span style='color:#111;'> 41B </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 263B </span>","children":null,"spread":false},{"title":"ml-project-checklist.md <span style='color:#111;'> 7.51KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 7.40KB </span>","children":null,"spread":false},{"title":"INSTALL.md <span style='color:#111;'> 6.09KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 5.24KB </span>","children":null,"spread":false},{"title":"CHANGES.md <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false},{"title":"nbclean_checkpoints <span style='color:#111;'> 4.87KB </span>","children":null,"spread":false},{"title":"nbdiff_checkpoint <span style='color:#111;'> 583B </span>","children":null,"spread":false},{"title":"pack-9533530ac201c5949e1a57cb542e16b4ce6b4c47.pack <span style='color:#111;'> 40.54MB </span>","children":null,"spread":false},{"title":"packed-refs <span style='color:#111;'> 112B </span>","children":null,"spread":false},{"title":"book_equations.pdf <span style='color:#111;'> 992.55KB </span>","children":null,"spread":false},{"title":"ladybug.png <span style='color:#111;'> 560.57KB </span>","children":null,"spread":false},{"title":"deep_belief_net.png <span style='color:#111;'> 183.34KB </span>","children":null,"spread":false},{"title":"test_image.png <span style='color:#111;'> 177.56KB </span>","children":null,"spread":false},{"title":"hopfield_network.png <span style='color:#111;'> 116.64KB </span>","children":null,"spread":false},{"title":"self_organizing_map.png <span style='color:#111;'> 97.83KB </span>","children":null,"spread":false},{"title":"rbm.png <span style='color:#111;'> 89.51KB </span>","children":null,"spread":false},{"title":"boltzmann_machine.png <span style='color:#111;'> 89.03KB </span>","children":null,"spread":false},{"title":"exercise2.png <span style='color:#111;'> 24.58KB </span>","children":null,"spread":false},{"title":"california.png <span style='color:#111;'> 9.80KB </span>","children":null,"spread":false},{"title":"jupyter_notebook_config.py <span style='color:#111;'> 691B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 34B </span>","children":null,"spread":false},{"title":"pack-9533530ac201c5949e1a57cb542e16b4ce6b4c47.rev <span style='color:#111;'> 15.84KB </span>","children":null,"spread":false},{"title":"rm_empty_subdirs <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"pre-rebase.sample <span style='color:#111;'> 4.78KB </span>","children":null,"spread":false},{"title":"fsmonitor-watchman.sample <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"update.sample <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"push-to-checkout.sample <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"sendemail-validate.sample <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"pre-commit.sample <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"prepare-commit-msg.sample <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"pre-push.sample <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"commit-msg.sample <span style='color:#111;'> 896B </span>","children":null,"spread":false},{"title":"pre-receive.sample <span style='color:#111;'> 544B </span>","children":null,"spread":false},{"title":"applypatch-msg.sample <span style='color:#111;'> 478B </span>","children":null,"spread":false},{"title":"pre-applypatch.sample <span style='color:#111;'> 424B </span>","children":null,"spread":false},{"title":"pre-merge-commit.sample <span style='color:#111;'> 416B </span>","children":null,"spread":false},{"title":"post-update.sample <span style='color:#111;'> 189B </span>","children":null,"spread":false},{"title":"tensorboard <span style='color:#111;'> 44B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明