机器学习算法Python实现-线性回归,逻辑回归,BP神经网络

上传者: 52834435 | 上传时间: 2025-05-05 19:54:36 | 文件大小: 34.1MB | 文件类型: ZIP
机器学习算法Python实现——线性回归,逻辑回归,BP神经网络 机器学习算法Python实现 一、线性回归 1、代价函数 2、梯度下降算法 3、均值归一化 4、最终运行结果 5、使用scikit-learn库中的线性模型实现 二、逻辑回归 1、代价函数 2、梯度 3、正则化 4、S型函数(即) 5、映射为多项式 6、使用的优化方法 7、运行结果 8、使用scikit-learn库中的逻辑回归模型实现 逻辑回归_手写数字识别_OneVsAll 1、随机显示100个数字 2、OneVsAll 3、手写数字识别 4、预测 5、运行结果 6、使用scikit-learn库中的逻辑回归模型实现 三、BP神经网络 1、神经网络model 2、代价函数 3、正则化 4、反向传播BP 5、BP可以求梯度的原因 6、梯度检查 7、权重的随机初始化 8、预测 9、输出结果 四、SVM支持向量机 1、代价函数 2、Large Margin 3、SVM Kernel(核函数) 4、使用中的模型代码 5、运行结果 五、K-Means聚类算法 1、聚类过程 2、目标函数 3、聚类中心的选择 4、聚类个数K的选择

文件下载

资源详情

[{"title":"( 103 个子文件 34.1MB ) 机器学习算法Python实现-线性回归,逻辑回归,BP神经网络","children":[{"title":"predict.csv <span style='color:#111;'> 244.14KB </span>","children":null,"spread":false},{"title":"predict.csv <span style='color:#111;'> 244.14KB </span>","children":null,"spread":false},{"title":"class_y.csv <span style='color:#111;'> 146.48KB </span>","children":null,"spread":false},{"title":"data.csv <span style='color:#111;'> 657B </span>","children":null,"spread":false},{"title":"NeuralNetwork_03.jpg <span style='color:#111;'> 4.59MB </span>","children":null,"spread":false},{"title":"LogisticRegression_03.jpg <span style='color:#111;'> 2.61MB </span>","children":null,"spread":false},{"title":"data_faces.mat <span style='color:#111;'> 10.52MB </span>","children":null,"spread":false},{"title":"data_digits.mat <span style='color:#111;'> 7.16MB </span>","children":null,"spread":false},{"title":"data_digits.mat <span style='color:#111;'> 7.16MB </span>","children":null,"spread":false},{"title":"data2.mat <span style='color:#111;'> 91.29KB </span>","children":null,"spread":false},{"title":"bird.mat <span style='color:#111;'> 44.54KB </span>","children":null,"spread":false},{"title":"data1.mat <span style='color:#111;'> 9.28KB </span>","children":null,"spread":false},{"title":"data2.mat <span style='color:#111;'> 7.43KB </span>","children":null,"spread":false},{"title":"data3.mat <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"data.mat <span style='color:#111;'> 4.67KB </span>","children":null,"spread":false},{"title":"data.mat <span style='color:#111;'> 995B </span>","children":null,"spread":false},{"title":"data1.mat <span style='color:#111;'> 981B </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 83.66KB </span>","children":null,"spread":false},{"title":"data1.npy <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"data.npy <span style='color:#111;'> 644B </span>","children":null,"spread":false},{"title":"PCA_08.png <span style='color:#111;'> 266.38KB </span>","children":null,"spread":false},{"title":"PCA_06.png <span style='color:#111;'> 163.55KB </span>","children":null,"spread":false},{"title":"K-Means_06.png <span style='color:#111;'> 156.68KB </span>","children":null,"spread":false},{"title":"LogisticRegression_08.png <span style='color:#111;'> 152.99KB </span>","children":null,"spread":false},{"title":"PCA_07.png <span style='color:#111;'> 120.67KB </span>","children":null,"spread":false},{"title":"NeuralNetwork_07.png <span style='color:#111;'> 110.01KB </span>","children":null,"spread":false},{"title":"SVM_10.png <span style='color:#111;'> 100.54KB </span>","children":null,"spread":false},{"title":"LogisticRegression_09.png <span style='color:#111;'> 85.00KB </span>","children":null,"spread":false},{"title":"NeuralNetwork_06.png <span style='color:#111;'> 83.25KB </span>","children":null,"spread":false},{"title":"AnomalyDetection_09.png <span style='color:#111;'> 59.71KB </span>","children":null,"spread":false},{"title":"LogisticRegression_06.png <span style='color:#111;'> 45.05KB </span>","children":null,"spread":false},{"title":"NeuralNetwork_05.png <span style='color:#111;'> 42.79KB </span>","children":null,"spread":false},{"title":"LogisticRegression_04.png <span style='color:#111;'> 38.57KB </span>","children":null,"spread":false},{"title":"NeuralNetwork_04.png <span style='color:#111;'> 36.47KB </span>","children":null,"spread":false},{"title":"LogisticRegression_12.png <span style='color:#111;'> 32.41KB </span>","children":null,"spread":false},{"title":"bird.png <span style='color:#111;'> 32.26KB </span>","children":null,"spread":false},{"title":"K-Means_05.png <span style='color:#111;'> 29.93KB </span>","children":null,"spread":false},{"title":"PCA_05.png <span style='color:#111;'> 29.72KB </span>","children":null,"spread":false},{"title":"SVM_09.png <span style='color:#111;'> 28.40KB </span>","children":null,"spread":false},{"title":"K-Means_03.png <span style='color:#111;'> 27.10KB </span>","children":null,"spread":false},{"title":"NeuralNetwork_01.png <span style='color:#111;'> 24.31KB </span>","children":null,"spread":false},{"title":"AnomalyDetection_08.png <span style='color:#111;'> 23.48KB </span>","children":null,"spread":false},{"title":"K-Means_02.png <span style='color:#111;'> 23.29KB </span>","children":null,"spread":false},{"title":"AnomalyDetection_10.png <span style='color:#111;'> 23.19KB </span>","children":null,"spread":false},{"title":"K-Means_01.png <span style='color:#111;'> 21.28KB </span>","children":null,"spread":false},{"title":"PCA_01.png <span style='color:#111;'> 20.79KB </span>","children":null,"spread":false},{"title":"LinearRegression_01.png <span style='color:#111;'> 20.66KB </span>","children":null,"spread":false},{"title":"SVM_08.png <span style='color:#111;'> 20.60KB </span>","children":null,"spread":false},{"title":"SVM_07.png <span style='color:#111;'> 19.03KB </span>","children":null,"spread":false},{"title":"AnomalyDetection_03.png <span style='color:#111;'> 18.38KB </span>","children":null,"spread":false},{"title":"AnomalyDetection_02.png <span style='color:#111;'> 18.23KB </span>","children":null,"spread":false},{"title":"LogisticRegression_01.png <span style='color:#111;'> 17.93KB </span>","children":null,"spread":false},{"title":"LogisticRegression_10.png <span style='color:#111;'> 17.55KB </span>","children":null,"spread":false},{"title":"PCA_04.png <span style='color:#111;'> 15.86KB </span>","children":null,"spread":false},{"title":"K-Means_04.png <span style='color:#111;'> 15.85KB </span>","children":null,"spread":false},{"title":"PCA_03.png <span style='color:#111;'> 15.67KB </span>","children":null,"spread":false},{"title":"LogisticRegression_02.png <span style='color:#111;'> 15.63KB </span>","children":null,"spread":false},{"title":"SVM_05.png <span style='color:#111;'> 14.52KB </span>","children":null,"spread":false},{"title":"NeuralNetwork_08.png <span style='color:#111;'> 14.51KB </span>","children":null,"spread":false},{"title":"SVM_03.png <span style='color:#111;'> 13.74KB </span>","children":null,"spread":false},{"title":"SVM_02.png <span style='color:#111;'> 12.40KB </span>","children":null,"spread":false},{"title":"SVM_01.png <span style='color:#111;'> 10.94KB </span>","children":null,"spread":false},{"title":"LogisticRegression_07.png <span style='color:#111;'> 10.78KB </span>","children":null,"spread":false},{"title":"LogisticRegression_11.png <span style='color:#111;'> 10.38KB </span>","children":null,"spread":false},{"title":"AnomalyDetection_04.png <span style='color:#111;'> 9.39KB </span>","children":null,"spread":false},{"title":"AnomalyDetection_01.png <span style='color:#111;'> 7.32KB </span>","children":null,"spread":false},{"title":"SVM_06.png <span style='color:#111;'> 7.22KB </span>","children":null,"spread":false},{"title":"LogisticRegression_05.png <span style='color:#111;'> 7.17KB </span>","children":null,"spread":false},{"title":"PCA_02.png <span style='color:#111;'> 6.98KB </span>","children":null,"spread":false},{"title":"NeuralNetwork_09.png <span style='color:#111;'> 6.70KB </span>","children":null,"spread":false},{"title":"AnomalyDetection_07.png <span style='color:#111;'> 6.26KB </span>","children":null,"spread":false},{"title":"SVM_04.png <span style='color:#111;'> 5.94KB </span>","children":null,"spread":false},{"title":"NeuralNetwork_02.png <span style='color:#111;'> 5.67KB </span>","children":null,"spread":false},{"title":"LogisticRegression_13.png <span style='color:#111;'> 5.45KB </span>","children":null,"spread":false},{"title":"AnomalyDetection_06.png <span style='color:#111;'> 4.42KB </span>","children":null,"spread":false},{"title":"AnomalyDetection_05.png <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"K-Means_07.png <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false},{"title":"NeuralNetwork.py <span style='color:#111;'> 10.84KB </span>","children":null,"spread":false},{"title":"LogisticRegression.py <span style='color:#111;'> 5.12KB </span>","children":null,"spread":false},{"title":"K-Menas.py <span style='color:#111;'> 5.08KB </span>","children":null,"spread":false},{"title":"LogisticRegression_OneVsAll.py <span style='color:#111;'> 4.91KB </span>","children":null,"spread":false},{"title":"PCA.py <span style='color:#111;'> 4.36KB </span>","children":null,"spread":false},{"title":"AnomalyDetection.py <span style='color:#111;'> 3.84KB </span>","children":null,"spread":false},{"title":"LinearRegression.py <span style='color:#111;'> 3.76KB </span>","children":null,"spread":false},{"title":"PCA_scikit-learn.py <span style='color:#111;'> 3.10KB </span>","children":null,"spread":false},{"title":"SVM_scikit-learn.py <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"LogisticRegression_scikit-learn.py <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"LinearRegression_scikit-learn.py <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"LogisticRegression_OneVsAll_scikit-learn.py <span style='color:#111;'> 806B </span>","children":null,"spread":false},{"title":"K-Means_scikit-learn.py <span style='color:#111;'> 549B </span>","children":null,"spread":false},{"title":"备注.txt <span style='color:#111;'> 5.13KB </span>","children":null,"spread":false},{"title":"data1.txt <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"data2.txt <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"data.txt <span style='color:#111;'> 657B </span>","children":null,"spread":false},{"title":"SVM.wmf <span style='color:#111;'> 41.70KB </span>","children":null,"spread":false},{"title":"NeuralNetwork.wmf <span style='color:#111;'> 33.99KB </span>","children":null,"spread":false},{"title":"PCA.wmf <span style='color:#111;'> 27.62KB </span>","children":null,"spread":false},{"title":"LogisticRegression_01.wmf <span style='color:#111;'> 21.46KB </span>","children":null,"spread":false},{"title":"AnomalyDetection.wmf <span style='color:#111;'> 19.63KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明