2024年第九届全国密码技术竞赛特等奖《面向海量大数据的跨模态密文检索系统》.zip

上传者: yhsbzl | 上传时间: 2025-10-09 11:08:41 | 文件大小: 189.06MB | 文件类型: ZIP
2024年第九届全国密码技术竞赛中获得特等奖的作品《面向海量大数据的跨模态密文检索系统》是一套先进的技术方案,旨在解决海量大数据环境下的密文检索问题。在这项技术中,跨模态检索是指能够在不同数据模态之间进行检索的能力,而密文检索则涉及在数据被加密后进行有效检索的挑战。 跨模态密文检索系统的设计需要解决的是数据的安全性问题,因为大数据往往涉及敏感信息。因此,系统必须采用高效的加密技术,保证数据在存储和传输过程中的安全。同时,为了保证检索的效率,加密技术不能简单地损害数据的检索性能。这就要求设计一种既能保护数据隐私,又能支持高效检索的加密算法。 在实现这一目标的过程中,可能会涉及到多种先进的密码学方法和技术,如同态加密、安全多方计算、可搜索加密等。同态加密技术允许对加密数据直接进行计算,而不必解密,这对于保护数据隐私至关重要。安全多方计算则允许多个参与方共同参与计算,同时保证各自输入的隐私性。可搜索加密则允许用户在不解密的情况下,对加密数据进行搜索。 此外,跨模态密文检索系统还需要强大的索引技术。在数据被加密之后,传统的索引方法可能不再适用。因此,必须设计能够处理加密数据的索引结构,这可能涉及到特殊的索引构建算法和数据结构,如加密后的倒排索引、加密树结构等。 系统还要考虑到海量数据的存储和管理问题。在大数据环境下,数据的规模往往非常庞大,这就需要高效的存储方案,如分布式文件系统、云存储等。同时,还要有有效的数据管理策略,以便于数据的快速检索和访问。 在系统的设计中,还应当考虑到用户体验。如何在保证安全性和检索效率的同时,为用户提供直观易用的检索界面和功能,也是设计者需要重点考虑的问题。 跨模态密文检索系统是一个集成了多种先进密码学技术、索引技术、数据存储和管理策略以及用户体验设计的复杂系统。它的开发和应用不仅可以提升大数据环境下的信息安全水平,还可以为相关领域提供强有力的技术支持,推动信息检索技术的发展。 另外,从文件名称"Cross-Model-Encrypted-Search-System-main"可以看出,该压缩包内可能包含系统的主要文件和代码库。这些文件可能包括系统设计文档、源代码、测试案例、用户手册和运行指南等,这些是实现跨模态密文检索系统功能的重要组件。 这套系统将为大数据环境下的信息安全和检索效率提供全新的解决方案,具有重要的理论和实际应用价值。随着技术的不断进步和应用领域的扩大,这套系统有望在更多领域得到广泛应用,成为保护数据隐私和实现高效数据检索的重要工具。

文件下载

资源详情

[{"title":"( 164 个子文件 189.06MB ) 2024年第九届全国密码技术竞赛特等奖《面向海量大数据的跨模态密文检索系统》.zip","children":[{"title":"splitter.c <span style='color:#111;'> 234.23KB </span>","children":null,"spread":false},{"title":"dataset1.csv <span style='color:#111;'> 52B </span>","children":null,"spread":false},{"title":"splitter.cp310-win_amd64.exp <span style='color:#111;'> 726B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 47B </span>","children":null,"spread":false},{"title":"Chinese-CLIP.iml <span style='color:#111;'> 318B </span>","children":null,"spread":false},{"title":"Chinese-CLIP-on-MUGE-Retrieval.ipynb <span style='color:#111;'> 710.11KB </span>","children":null,"spread":false},{"title":"pokemon.jpeg <span style='color:#111;'> 6.07KB </span>","children":null,"spread":false},{"title":"RoBERTa-wwm-ext-base-chinese.json <span style='color:#111;'> 394B </span>","children":null,"spread":false},{"title":"RoBERTa-wwm-ext-large-chinese.json <span style='color:#111;'> 393B </span>","children":null,"spread":false},{"title":"RBT3-chinese.json <span style='color:#111;'> 392B </span>","children":null,"spread":false},{"title":"ViT-H-14.json <span style='color:#111;'> 163B </span>","children":null,"spread":false},{"title":"RN50.json <span style='color:#111;'> 143B </span>","children":null,"spread":false},{"title":"ViT-L-14.json <span style='color:#111;'> 133B </span>","children":null,"spread":false},{"title":"ViT-L-14-336.json <span style='color:#111;'> 133B </span>","children":null,"spread":false},{"title":"ViT-B-16.json <span style='color:#111;'> 132B </span>","children":null,"spread":false},{"title":"ViT-B-32.json <span style='color:#111;'> 132B </span>","children":null,"spread":false},{"title":"splitter.cp310-win_amd64.lib <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false},{"title":"MUGE_seed=2024_hash-len=16 <span style='color:#111;'> 156B </span>","children":null,"spread":false},{"title":"MUGE_seed=2024_hash_len=32 <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":".name <span style='color:#111;'> 13B </span>","children":null,"spread":false},{"title":"splitter.obj <span style='color:#111;'> 311.99KB </span>","children":null,"spread":false},{"title":"certificate.pem <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"model_param.png <span style='color:#111;'> 114.56KB </span>","children":null,"spread":false},{"title":"MUGE_hash_64_epoch_20.pt <span style='color:#111;'> 34.04MB </span>","children":null,"spread":false},{"title":"MUGE_hash_32_epoch_20.pt <span style='color:#111;'> 33.03MB </span>","children":null,"spread":false},{"title":"MUGE_hash_32_epoch_20.pt <span style='color:#111;'> 33.03MB </span>","children":null,"spread":false},{"title":"MUGE_hash_32_epoch_20.pt <span style='color:#111;'> 17.03MB </span>","children":null,"spread":false},{"title":"MUGE_hash_32_epoch_20.pt <span style='color:#111;'> 17.03MB </span>","children":null,"spread":false},{"title":"MUGE_hash_64.pth <span style='color:#111;'> 68.07MB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 24.50KB </span>","children":null,"spread":false},{"title":"modeling_bert.py <span style='color:#111;'> 21.69KB </span>","children":null,"spread":false},{"title":"cvinw_zeroshot_templates.py <span style='color:#111;'> 18.66KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 18.07KB </span>","children":null,"spread":false},{"title":"imagenet_zeroshot_templates.py <span style='color:#111;'> 17.24KB </span>","children":null,"spread":false},{"title":"total_retrial.py <span style='color:#111;'> 17.11KB </span>","children":null,"spread":false},{"title":"total_retrial.py <span style='color:#111;'> 16.48KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 15.28KB </span>","children":null,"spread":false},{"title":"bert_tokenizer.py <span style='color:#111;'> 14.48KB </span>","children":null,"spread":false},{"title":"scheme_AES.py <span style='color:#111;'> 12.66KB </span>","children":null,"spread":false},{"title":"scheme_SM4.py <span style='color:#111;'> 12.21KB </span>","children":null,"spread":false},{"title":"std_scheme.py <span style='color:#111;'> 11.86KB </span>","children":null,"spread":false},{"title":"extract_features.py <span style='color:#111;'> 9.60KB </span>","children":null,"spread":false},{"title":"zeroshot_evaluation.py <span style='color:#111;'> 9.17KB </span>","children":null,"spread":false},{"title":"extract_origin_no_reset_id_feature_total.py <span style='color:#111;'> 8.44KB </span>","children":null,"spread":false},{"title":"params.py <span style='color:#111;'> 8.10KB </span>","children":null,"spread":false},{"title":"total_show.py <span style='color:#111;'> 7.65KB </span>","children":null,"spread":false},{"title":"data.py <span style='color:#111;'> 7.44KB </span>","children":null,"spread":false},{"title":"std_main.py <span style='color:#111;'> 7.35KB </span>","children":null,"spread":false},{"title":"extract_features_train_test_valid.py <span style='color:#111;'> 7.22KB </span>","children":null,"spread":false},{"title":"train_MLP_feature2hash.py <span style='color:#111;'> 7.17KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 7.06KB </span>","children":null,"spread":false},{"title":"train_MLP_feature2hash.py <span style='color:#111;'> 6.87KB </span>","children":null,"spread":false},{"title":"evaluation_tr.py <span style='color:#111;'> 6.30KB </span>","children":null,"spread":false},{"title":"evaluation.py <span style='color:#111;'> 6.23KB </span>","children":null,"spread":false},{"title":"load_dataset.py <span style='color:#111;'> 6.14KB </span>","children":null,"spread":false},{"title":"retrial_img2text.py <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"retrial_img2img.py <span style='color:#111;'> 6.06KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 5.63KB </span>","children":null,"spread":false},{"title":"retrial_text2img.py <span style='color:#111;'> 5.61KB </span>","children":null,"spread":false},{"title":"total_show.py <span style='color:#111;'> 5.26KB </span>","children":null,"spread":false},{"title":"extract_feature.py <span style='color:#111;'> 5.19KB </span>","children":null,"spread":false},{"title":"data.py <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 4.61KB </span>","children":null,"spread":false},{"title":"extract_hash.py <span style='color:#111;'> 4.35KB </span>","children":null,"spread":false},{"title":"evaluate.py <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false},{"title":"build_lmdb_dataset.py <span style='color:#111;'> 4.24KB </span>","children":null,"spread":false},{"title":"make_img_text_feature_pair.py <span style='color:#111;'> 4.11KB </span>","children":null,"spread":false},{"title":"configuration_bert.py <span style='color:#111;'> 3.91KB </span>","children":null,"spread":false},{"title":"IMI_enIMI.py <span style='color:#111;'> 3.74KB </span>","children":null,"spread":false},{"title":"Solver.py <span style='color:#111;'> 3.49KB </span>","children":null,"spread":false},{"title":"make_topk_predictions.py <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"make_topk_predictions_tr.py <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"dataset_wash.py <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"make_database.py <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false},{"title":"combined_feature_to_jsonl.py <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"combined_origin_dataset.py <span style='color:#111;'> 2.26KB </span>","children":null,"spread":false},{"title":"123.py <span style='color:#111;'> 2.23KB </span>","children":null,"spread":false},{"title":"CPU_GPU.py <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"reset_dataset_id.py <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"show_img2img.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"show_text2img.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"show_img2text.py <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"logger.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"CPU.py <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"metric.py <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"transform_openai_pretrain_weights.py <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"transform_ir_annotation_to_tr.py <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"hyper_parameter.py <span style='color:#111;'> 900B </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 725B </span>","children":null,"spread":false},{"title":"scheduler.py <span style='color:#111;'> 656B </span>","children":null,"spread":false},{"title":"show_total.py <span style='color:#111;'> 405B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 195B </span>","children":null,"spread":false},{"title":"123.py <span style='color:#111;'> 158B </span>","children":null,"spread":false},{"title":"setup.py <span style='color:#111;'> 118B </span>","children":null,"spread":false},{"title":"train_feature2hash.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明