上传者: zero1
|
上传时间: 2025-10-08 09:57:41
|
文件大小: 15.95MB
|
文件类型: PDF
本书深入讲解如何使用PyTorch构建生产级计算机视觉模型,涵盖图像分类、目标检测、图像分割、姿态估计与异常检测等核心任务。通过项目驱动的方式,结合工业级实践技巧,帮助读者掌握从数据预处理到模型部署的全流程。书中还介绍基于图像的搜索推荐系统与可解释AI技术,融合前沿方法与实用代码,适合希望将理论转化为实际应用的开发者与研究人员。配套代码与数据开放获取,助力快速上手与二次开发。
本书《PyTorch计算机视觉实战》是三位作者——阿克谢·库尔卡尼、阿达尔沙·希瓦南达和尼廷·兰詹·夏尔马倾力编写的计算机视觉领域的实战教程。本书深入探讨了如何运用PyTorch这一强大的深度学习框架,构建和部署生产级的计算机视觉模型。书中涉及的计算机视觉核心任务包括图像分类、目标检测、图像分割、姿态估计以及异常检测等。
在图像分类部分,作者详细介绍了如何使用PyTorch构建高效的图像分类系统,包括数据预处理、模型选择、训练以及优化等关键步骤。目标检测章节则深入讲解了目标检测的原理以及如何实现这一功能,包括区域建议网络(R-CNN)、YOLO(You Only Look Once)和SSD(Single Shot MultiBox Detector)等多种流行算法。
图像分割部分让读者了解像素级别的图像理解方法,探讨了如何通过全卷积网络(FCN)以及U-Net等模型对图像进行详细分割。姿态估计章节则侧重于人体姿态估计技术,解释了该技术在运动分析、人机交互等领域的应用。异常检测部分,作者讲述了如何利用深度学习技术发现视觉场景中的异常行为或对象。
在每项技术的讲解中,作者不仅提供了理论知识,还提供了实际的项目案例,通过项目驱动的学习方式,帮助读者将理论知识应用于实际问题的解决中。书中对工业级实践技巧的介绍,让读者了解如何在真实世界的应用场景中优化和调整模型。
此外,本书还介绍了图像的搜索推荐系统和可解释AI技术,这两个领域在当前计算机视觉技术的发展中扮演着越来越重要的角色。图像的搜索推荐系统部分,作者介绍了如何根据图像内容进行有效的搜索与推荐;可解释AI技术部分,则着重于如何让AI模型的决策过程更加透明和易于理解,这对于提高AI在医疗、金融等关键领域的信任度尤其重要。
为了辅助读者更好地理解内容和实践技能,本书提供了配套的代码和数据集,这些资源的开放获取可以让读者更快地上手,并支持二次开发。这样的安排不仅提升了学习效率,也鼓励了读者在实际操作中进行创新和改进。
本书适合那些希望将计算机视觉理论知识转化为实际应用的开发者和研究人员。无论读者是有经验的专业人士,还是正在学习计算机视觉的学生,都可以通过阅读本书,获得宝贵的知识和实践经验,进一步推动自身在计算机视觉领域的深入发展。
本书的版权归属于三位作者,阿克谢·库尔卡尼、阿达尔沙·希瓦南达和尼廷·兰詹·夏尔马,以及出版社,全书内容受到版权法保护。本书可以在全球范围内,通过实体书或电子书的形式获得,并拥有国际标准书号ISBN-13。
《PyTorch计算机视觉实战》是一本全面介绍计算机视觉和PyTorch框架应用的实战书籍。它不仅涵盖了计算机视觉的核心技术,还提供了实用的代码和项目,是计算机视觉研究者和开发者的宝贵资源。通过本书,读者可以获得构建和部署生产级计算机视觉模型的全面知识,是理论与实践并重的计算机视觉领域重要书籍。