【自然语言处理】经典机器学习与深度学习在文本聚类、分类及情感分析的应用:课程设计实验详解

上传者: zjz271674605 | 上传时间: 2025-06-19 19:42:43 | 文件大小: 43KB | 文件类型: TXT
内容概要:本文档介绍了《自然语言处理》课程设计的四个实验,涵盖了文本聚类、文本分类、文本情感分析和个性化新闻推荐。实验一通过经典机器学习方法对新闻数据进行文本聚类,使用TF-IDF和KMeans算法,分析了文本数据的预处理、特征提取和模型评估。实验二基于经典机器学习模型(SVM、K近邻、随机森林)对新闻进行分类,通过数据清洗、可视化、文本预处理、特征向量化和模型选择,实现了对新闻内容的精准分类。实验三利用深度学习方法(TextCNN、TextRNN、TextLSTM)对天问一号事件的Bilibili评论进行情感分析,通过数据探索、文本预处理、模型构建与评估,揭示了用户对航天事件的情感倾向。实验四基于浏览记录实现个性化新闻推荐,通过数据探索、预处理、构建物品相似度矩阵,实现了基于物品的协同过滤推荐。 适合人群:具备一定编程基础,对自然语言处理和机器学习感兴趣的高校学生或初入职场的研发人员。 使用场景及目标:①理解文本聚类、分类、情感分析和个性化推荐的基本原理和实现方法;②掌握文本数据的预处理、特征提取和模型选择技巧;③熟悉经典机器学习和深度学习在自然语言处理中的应用。 其他说明:本文档详细展示了每个实验的具体步骤、代码实现和运行结果,帮助读者全面了解自然语言处理的实践过程。建议读者结合实际项目需求,灵活应用所学知识,逐步提升对自然语言处理技术的理解和应用能力。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明