半桥LLC谐振变换器:plecs仿真研究,涵盖开环与闭环系统,波形分析与仿真结果展示,半桥LLC谐振变换器:开环与闭环的Plecs仿真研究,波形分析与应用实践,半桥LLC谐振变器的plecs仿真,开环闭环均有,图中放了一些波形及部分plecs仿真。 ,半桥LLC谐振变换器; plecs仿真; 开环仿真; 闭环仿真; 波形分析,半桥LLC谐振变换器仿真分析:开环闭环波形对比 半桥LLC谐振变换器是一种电力电子设备,用于高效地转换和控制电气能量。在Plecs仿真环境下进行的研究不仅对开环和闭环系统进行了全面的仿真分析,还深入探讨了波形分析以及仿真结果的展示。该研究涉及了从基本的开环操作到闭环控制的全过程,展示了波形在不同工作模式下的特性变化,并通过对比分析,对不同控制策略下的性能进行了评估。 半桥LLC谐振变换器的优点在于它能够在宽范围的负载条件下保持高效率和高功率密度。在实际应用中,这种变换器通常用于电源供应器、电动汽车充电器、以及可再生能源系统中,例如太阳能和风能逆变器。通过Plecs仿真软件,工程师可以构建精确的模型,模拟电路在不同工作条件下的性能,从而优化设计并预测实际电路的行为。 在本研究中,开环和闭环控制策略的仿真结果提供了对变换器性能的深刻见解。开环控制通常更简单,成本较低,但是它无法提供对输出电压或电流的精确调节,尤其是在负载变化较大时。闭环控制则利用反馈信号来调节输出,确保输出电压或电流维持在设定值。闭环系统更复杂,成本较高,但能够提供更好的性能,特别是在需要精确控制的场合。 波形分析是电力电子领域的一个重要方面,因为波形的形状、频率和幅度直接关系到电子设备的性能和寿命。在本研究中,通过对不同控制策略下波形的详细分析,可以揭示谐振变换器的工作特性,以及在不同控制条件下的效率和稳定性。 此外,仿真结果的展示不仅包括了波形的对比,还可能包含了其他重要的性能指标,如效率曲线、频率响应和温度分布等。这些结果对于设计工程师来说至关重要,因为它们可以帮助识别潜在的问题,并为实际硬件的构建提供可靠的设计依据。 文章中提及的文件名,如“文章标题半桥谐振变换器的仿真分析开环.doc”等,表明了研究内容的全面性,不仅覆盖了开环系统,还包括了闭环系统的分析。而文件扩展名“doc”、“html”和“jpg”表明研究结果可能以文档、网页和图像的形式展示,以适应不同的阅读和分析需求。 半桥LLC谐振变换器的研究涉及了多个层面,包括但不限于电路设计、控制策略的制定、性能仿真、以及最终的应用实践。Plecs仿真软件在这一过程中扮演了至关重要的角色,它不仅加速了设计和分析的流程,还提高了开发效率,使得在制造实际硬件之前能够对电路进行深入的测试和优化。
2026-01-10 01:15:53 440KB css3
1
内容概要:本文深入探讨了半桥/全桥LLC谐振变换器的四种主要控制方式:频率控制PFM、PWM控制、移相控制PSM和混合控制PFM+PSM。详细介绍了每种控制方式的工作原理、特点及应用场景,并提供了具体的MATLAB/Simulink和PLECS仿真代码示例。此外,文中还分享了许多实用的经验技巧,如频率控制中的开关损耗管理、PWM控制中的死区时间补偿、移相控制中的相位差优化以及混合控制中的模式切换策略等。 适用人群:从事电力电子设计的研究人员和技术工程师,尤其是对LLC谐振变换器感兴趣的专业人士。 使用场景及目标:帮助读者理解并掌握LLC谐振变换器的不同控制方法,以便在实际项目中选择最适合的技术方案,提升系统性能和可靠性。 其他说明:文章不仅涵盖了理论知识,还包括大量实战经验和代码片段,有助于读者快速上手并在实践中不断优化设计方案。
2026-01-09 10:21:54 1.29MB
1
单PWM加移相控制谐振型双有源桥变器(DAB SRC)闭环仿真模型是一个高级的电子电力转换系统,其设计目的是为了实现高效的能量传输。这种变器的核心优势在于其能够在较宽的输入电压范围内调节输出电压,并且保持较高的能量转换效率。闭环控制系统的引入进一步提高了系统性能的稳定性和可靠性。定频模式下的控制策略意味着变器的开关频率保持不变,而通过改变原边开关的占空比来调节输出电压。这种方式使得变器对负载和电网波动的适应能力更强,更加符合现代电力电子设备的要求。 在matlab simulink环境下构建的该模型,为研究人员和工程师提供了一个强大的仿真工具,用以分析和优化DAB SRC的性能。Matlab Simulink是一个直观的图形化编程环境,特别适合进行复杂的动态系统和多域系统的建模、仿真和分析。通过这种方式,研究者能够在实际搭建硬件之前,进行电路设计的验证和参数调整,从而节省了大量的成本和时间。 此外,变器的设计中加入了单脉冲宽度调制(PWM)技术和移相控制策略。PWM技术通过控制开关元件的开通和关断时间比例来调节输出电压的大小,而移相控制则是通过改变开关器件之间触发脉冲的相位差来实现对输出电压的精细控制。这种双控制策略的结合使得变器可以在不同的工作状态下,如轻载、重载以及各种过渡状态,保持高效和稳定的工作性能。 从文件名列表中可以看出,该压缩包内还包含了一些相关的文档和图片资料。例如,“风储虚拟惯量调频仿真模型在四机两区系统.doc”可能是介绍如何将DAB SRC变器应用于特定的电力系统中进行调频控制的研究文档。而“单加移相控制谐振型双有源桥变器闭环仿真模.txt”和“探索单加移相控制在谐振型双有源桥变.txt”等文本文件可能包含了一些技术细节、理论分析或实验结果,这些内容对于深入理解DAB SRC的工作原理和性能特点至关重要。 图片文件如“1.jpg”、“2.jpg”和“3.jpg”可能展示了仿真模型的结构图、波形图或实验结果等,这些视觉资料有助于直观理解变器的设计和功能。文档“单加移相控制谐振型双有源桥变换器是一种.txt”可能是对变器类型或控制策略的概述说明。“单加移相控制谐振型双有源桥变换器闭环仿.txt”和“单加移相控制谐振型双有源桥变换器闭环仿真模.txt”则可能包含了闭环仿真模型的具体实现细节和分析数据。 单PWM加移相控制谐振型双有源桥变器闭环仿真模型在定频模式下,通过原边开关占空比的调整,实现了高效的输出电压调节。该模型在matlab simulink环境下构建,不仅提供了强大的仿真工具,而且通过单PWM和移相控制策略的结合,极大地增强了变器的适用范围和性能稳定性。同时,相关的文档和图片资料为深入研究和理解DAB SRC变器的工作原理和应用提供了宝贵的参考资源。
2026-01-06 14:54:23 268KB matlab
1
在当前的无线通信系统中,滤波器作为一种重要的射频组件,扮演着不可或缺的角色。微带滤波器因其平面结构、易集成以及低成本等优势,在现代通信设备中得到了广泛的应用。微带SIR多通带谐振器是一种先进的滤波器设计,它通过独特的谐振拓扑结构,将传统带通谐振器的单一通带扩展为多个通带,实现了频率选择性的增强和灵活的带宽控制。 SIR指的是“Stepped Impedance Resonator”,即阶跃阻抗谐振器,这是一种常用于设计微带滤波器的谐振结构。在SIR设计中,谐振器的不同部分具有不同的特性阻抗,这种变化会导致谐振器的频率响应发生变化,从而在设计时可以精确地控制通带的位置和带宽。在多通带滤波器的设计中,SIR结构使得设计者能够在特定的频段内创建多个谐振峰,每个谐振峰对应一个通带。 由于微带SIR多通带谐振器的这些特点,它可以用于多种不同的应用场合,例如在需要同时处理多个通信标准的场合,如双频或者多频段的手机、卫星通信、无线局域网等。此外,多通带滤波器还能够为特定的通信系统提供更好的频率隔离,降低不同信号之间的干扰,从而改善系统的性能。 当前提供的初代模型是一个可以进一步改进的基础设计。论文中详细介绍了该微带SIR多通带谐振器的设计原理和实现方法,其中包含了对不同材料、几何尺寸和阶跃阻抗比对谐振器性能影响的分析。此外,HFSS模型是一个基于有限元方法的三维电磁场仿真软件,该软件可以模拟微带SIR多通带谐振器在不同操作条件下的电磁行为,为设计人员提供了直观的设计验证和性能预测工具。附带的仿真结果进一步证实了所提出的多通带谐振器设计的可行性,为后续的研究和开发工作提供了可靠的数据支持。 多通带微带滤波器的设计和实现涉及到电磁理论、材料科学、电路设计等多方面的知识。设计者需要考虑诸如介质基板的选择、微带线的布局、以及谐振器间的耦合等因素,这些都直接关系到滤波器的性能。同时,随着无线通信标准的不断发展和通信频段的日益拥挤,对微带多通带滤波器的性能要求也越来越高,这要求设计者不断创新,优化设计方法和提高设计精度。 微带SIR多通带谐振器的出现,不仅为通信工程师提供了新的设计思路和工具,也为未来无线通信设备的性能提升开辟了新的途径。随着研究的深入和技术的成熟,我们可以预见这种滤波器将在未来的通信系统中扮演更加重要的角色。
2025-12-31 09:30:24 1.04MB
1
内容概要:本文详细介绍了由Basso大师设计的LLC谐振控制器,涵盖了从理论到实际应用的各个方面。首先,利用Mathcad进行详细的数学建模,将复杂的谐振腔参数设计简化为基本运算步骤,如特征阻抗和K因子的计算。其次,借助Simplis仿真软件,对控制器进行了全面的模拟测试,特别是针对轻载条件下的突发模式控制以及极端情况下的性能表现。此外,还探讨了如何通过矩阵运算评估寄生参数的影响,并展示了在不同恶劣工况下系统的稳定性和鲁棒性。 适合人群:从事电源设计的专业工程师和技术爱好者,尤其是那些希望深入了解LLC谐振控制器内部机制的人士。 使用场景及目标:适用于需要优化电源转换效率、提高系统可靠性的项目中。通过对文中提供的具体实例的学习,可以掌握如何在实际工作中运用先进的计算工具和仿真手段来改进产品设计。 其他说明:这份资料不仅提供了详尽的技术指导,更重要的是传达了一种设计理念——即允许一定程度的设计容差以增强系统的适应能力。这对于追求高效能和高可靠性电源解决方案的研发团队来说是非常宝贵的启示。
2025-12-28 13:40:36 2.68MB
1
【LLC谐振变换器效率低下原因分析及解决方法】 LLC谐振变换器因其开关损耗小、适用于高频高功率应用而备受青睐。然而,在实际设计中,许多工程师可能会遇到功率输出不足的问题。本文以半桥谐振LLC变换器为例,深入探讨效率低下原因并提出解决方案。 我们来看看半桥LLC的基本参数。在这个实例中,PFC铁硅铝磁环AS130的电感量为330uH,PFC二极管选用MUR460,PFC MOSFET为7N60,PFC输出电压为395V。负载为24V,6A,146W。LLC级的谐振网络参数包括谐振电感Ls为175uH,谐振电容Cs为15nF,励磁电感Lm为850uH,M值(励磁电感与谐振电感之比)为5,Q值为0.5,工作频率Fr为100kHz。变压器的匝比为8.5,开关使用7N60二极管。在满载150W,开关频率82kHz的情况下,虽然波形看起来正常,但效率仅达到88%。 **思考1**:低励磁电感可能导致MOSFET关断损耗增加。初始设计中,励磁电感Lm为550uH,通过调整到850uH,虽然空载时励磁电流峰值有所下降,但效率提升有限,因为降低励磁电感不利于ZVS条件的实现。 **思考2**:次级二极管在谐振网络电流等于励磁电感电流后停止传导,可能影响ZCS,尤其是在满载时,二极管振荡可能恶化效率。需要测量满载时的二极管电流波形以确认。 **思考3**:二极管钳位和双谐振电容的过载保护方案可能影响效率。这需要进一步评估其对整体性能的影响。 **建议1**:提高工作频率,确保开关频率略高于谐振频率,以补偿死区时间的影响。 **建议2**:避免在重载时使用过低的开关频率,防止副边漏感和原边节电容谐振,影响效率。 **建议3**:单独测试PFC和DCDC部分,以确定效率低下的源头。增大励磁电感虽可减少励磁电流,但可能不利于ZVS,增加死区时间反而可能降低效率。 **建议4**:对于PFC效率低的问题,可考虑采用CRM或DCM模式。如果空间允许,可使用铁氧体提升效率。 经过上述建议的实施,再次测试得到满载30分钟的效率提升至89.6%。这表明参数的微调对于效率改善至关重要。具体参数调整包括电感量增大、初级匝数减少、次级电流密度提升以及考虑最小输入电压计算峰值增益等。同时,根据Q值选择合适的谐振元件值,并通过控制初级和次级间的物理距离来调整漏感,确保系统性能的优化。 总结来说,提高LLC谐振变换器效率涉及多个方面,包括正确计算谐振频率、优化谐振网络参数、合理选择开关器件以及考虑系统的保护策略。通过对这些因素的精细调整,可以显著提升变换器的工作效率。
2025-12-01 17:33:21 308KB 谐振变换器
1
内容概要:本文详细介绍了基于TMS320F28034PNT的数字控制LLC谐振开关电源开发板CSS02404。开发板采用半桥LLC拓扑和中心抽头整流结构,具备多种保护功能如过压、过流保护等。文中展示了PID控制的实现方法及其在电源控制中的应用,讨论了多零点补偿器和双环嵌套结构的作用。此外,还提供了丰富的调试技巧,如利用GPIO模拟DAC输出调试波形,以及硬件设计中的关键细节,如MOSFET驱动电路的优化。提供的原理图和源码有助于深入理解数字控制的具体实现。 适合人群:从事电力电子、数字电源设计的研发人员和技术爱好者。 使用场景及目标:适用于希望深入了解LLC谐振开关电源数字控制原理的研究者和工程师。通过实际操作和调试,掌握PID控制、多零点补偿器的应用,提升数字电源设计能力。 其他说明:开发板不仅提供硬件支持,还包括详细的源码和调试工具,便于用户快速上手并进行深入研究。
2025-12-01 12:09:21 1.98MB
1
三电平半桥LLC谐振变换器电路仿真研究:频率控制、驱动信号CMPA CMPB与特性分析,三电平半桥LLC谐振变换器电路仿真研究:移相角度控制与DSP PWM生成方式探讨,输出电压优化与特性分析,三电平半桥LLC谐振变器电路仿真 采用频率控制方式 引入一定的移相角度(比较小) 驱动信号采用CMPA CMPB方式产生 增计数模式(参照DSP PWM生成) 相比普通半桥LLC开关管电压应力小 输出电压闭环控制 输出特性好,几乎无超调,软开关 plecs matlab simulink等软件模型都有 ,三电平半桥LLC谐振变换器; 频率控制; 移相角度; 驱动信号CMPA CMPB; 增计数模式; 电压应力小; 输出电压闭环控制; 软开关; PLC、Matlab、Simulink模型。,三电平半桥LLC谐振变换器:频率控制与CMPA CMPB驱动的仿真研究
2025-11-18 08:15:58 1.32MB edge
1
PWM控制下的半桥与全桥LLC谐振变换器的仿真过程,重点探讨了软开关技术和输出电压闭环控制的实现。文中首先简述了LLC谐振变换器的基本概念及其优势,接着逐步讲解了如何使用Matlab/Simulink/PLECS等软件构建模型,包括选择合适的谐振元件参数。随后,文章深入分析了PWM控制策略的作用以及如何通过调整PWM信号的占空比来维持输出电压的稳定性。此外,还特别强调了闭环控制系统的设计,确保输出电压保持在设定范围内,并减少了开关损耗和噪声。最后,通过对仿真结果的分析,验证了所提出的方法的有效性,并对未来的研究方向进行了展望。 适合人群:从事电力电子设计的技术人员、高校相关专业师生、对电力电子技术感兴趣的科研工作者。 使用场景及目标:适用于需要深入了解LLC谐振变换器工作原理和技术细节的人群,帮助他们掌握PWM控制策略、软开关技术和闭环控制的实际应用,从而提高设计能力和解决实际工程问题的能力。 其他说明:本文不仅提供了理论知识,还包括具体的建模和仿真操作指导,有助于读者快速上手实践。
2025-11-07 13:53:50 513KB
1
半桥LLC谐振变换器Matlab Simulink仿真技术研究:电压闭环PI-PI控制策略下输出12V实现软开关运行的研究与实现,基于Matlab Simulink仿真的半桥LLC谐振变换器:电压闭环PI控制实现12V输出与软开关运行,半桥LLC谐振变器,Matlab simulink仿真,电压闭环PI pi控制,输出电压12V,实现软开关运行。 ,半桥LLC谐振变换器; Matlab simulink仿真; 电压闭环PI控制; 软开关运行; 输出电压12V,Matlab仿真半桥LLC谐振变换器:实现12V软开关电压闭环控制
2025-11-07 13:28:18 2.62MB safari
1