Qt OpenCV图像视觉框架集成全套上位机源码库:多相机多线程支持,模块自定义扩展与灵活算法实现,Qt OpenCV图像视觉框架:全套源码,工具可扩展,多相机多线程支持,模块化设计,Qt+OpenCV图像视觉框架全套源码上位机源码 工具可扩展。 除了opencv和相机sdk的dll,其它所有算法均无封装,可以根据自己需要补充自己的工具。 基于 Qt5.14.2 + VS2019 + OpenCV 开发实现,支持多相机多线程,每个工具都是单独的 DLL,主程序通过公用的接口访问以及加载各个工具。 包含涉及图像算法的工具、 逻辑工具、通讯工具和系统工具等工具。 ,Qt; OpenCV; 图像视觉框架; 源码; 上位机源码; 扩展性; 多相机多线程; DLL; 接口访问; 逻辑工具; 通讯工具; 系统工具。,Qt与OpenCV图像视觉框架:多相机多线程上位机源码全解析
2025-11-05 09:55:35 3.84MB ajax
1
COMSOL中的多孔介质模拟:利用MATLAB代码随机分布的二维三维球圆模型生成算法打包及功能详解,利用COMSOL与MATLAB代码实现的随机分布球-圆模型:二维三维多孔介质模拟程序包,COMSOL with MATLAB代码随机分布球 圆模型及代码。 包含二维三维,打包。 用于模拟多孔介质 二维COMSOL with MATLAB 接口代码 多孔介质生成 以及 互不相交小球生成程序 说明:本模型可以生成固定数目的互不相交的随机小球;也可以生成随机孔隙模型 一、若要生成固定数目的小球,则在修改小球个数count的同时,将n改为1 二、若要生成随机孔隙模型,则将count尽量调大,保证能生成足够多的小球 三维COMSOL with MATLAB代码:随机分布小球模型 功能: 1、本模型可以生成固定小球数量以及固定孔隙率的随机分布独立小球模型 2、小球半径服从正态分布,需要给定半径均值和标准差。 2、若要生成固定小球数量模型,则更改countsph,并将孔隙率n改为1 3、若要生成固定孔隙率模型,则更改孔隙率n,并将countsph改为一个极大值1e6. ,核心关键词: COMS
2025-11-04 20:20:35 3.4MB 数据结构
1
计算机视觉与深度学习作为人工智能领域中最为活跃的分支之一,近年来得到了迅速的发展。特别是在图像处理和目标检测方面,研究者们不断推出新的算法和技术,旨在实现更高效、更准确的图像理解和分析。本文所涉及的正是这样一个综合性课题,即基于YOLOv5(You Only Look Once version 5)这一流行的目标检测算法的改进算法开发出的高精度实时多目标检测与跟踪系统。 YOLOv5算法是一种端到端的深度学习方法,它以速度快、准确率高而著称,非常适合用于处理需要实时反馈的场景,如智能监控、自动驾驶和工业自动化等。通过使用卷积神经网络(CNN),YOLOv5能够在单次前向传播过程中直接从图像中预测边界框和概率,相较于传统的目标检测方法,它显著降低了延迟,提高了处理速度。 该系统在原有YOLOv5算法的基础上,引入了多方面改进。在算法层面,可能采用了更先进的网络结构或优化策略,以提升模型对于不同场景下目标检测的适应性和准确性。系统可能整合了更多的数据增强技术,使得模型能更好地泛化到新的数据集上。此外,为了提升多目标跟踪的性能,系统可能还集成了高级的追踪算法,这些算法能够保持目标在连续帧中的稳定性,即使在目标之间发生交叉、遮挡等复杂情况下也能实现准确跟踪。 OpenCV(Open Source Computer Vision Library)是计算机视觉领域的一个重要工具库,它提供了一系列的图像处理函数和机器学习算法,能够帮助开发者快速实现各种视觉任务。而TensorFlow和PyTorch作为当下流行的深度学习框架,为算法的实现提供了强大的支持,它们丰富的API和灵活的计算图机制使得构建复杂模型变得更加简单和高效。 智能监控系统通过实时图像处理和目标检测技术,可以自动识别和跟踪视频中的异常行为和特定物体,从而提高安全性。在自动驾驶领域,多目标检测与跟踪系统对于车辆行驶环境中的行人、车辆、路标等进行精准识别,是实现高级驾驶辅助系统(ADAS)和自动驾驶技术的关键。工业自动化中,对于生产线上的零件进行实时监控和识别,能够提高生产效率和质量控制的精确度。 从压缩包内的文件名称“附赠资源.docx”和“说明文件.txt”推测,该压缩包可能还包含了一份详细的使用说明文档和附加资源文件。这些文档可能提供了系统的安装部署、配置指南、使用教程等,对于用户来说,是十分宝贵的参考资料。而“EvolutionNeuralNetwork-master”文件夹可能包含了与目标检测算法相关的源代码和训练好的模型文件,这对于理解和复现该系统具有重要的参考价值。 在技术不断进步的今天,深度学习和计算机视觉技术的应用领域正变得越来越广泛。YOLOv5算法的改进和应用只是冰山一角,未来,我们有理由相信,随着技术的不断成熟和优化,基于深度学习的图像处理和目标检测技术将在更多领域发挥其重要作用,从而推动社会的进步和发展。
2025-11-04 16:46:09 94KB
1
内容概要:本文介绍了基于空间矢量脉宽调制(SVPWM)算法的永磁同步电机脉冲电池加热算法及其在Simulink中的模型仿真。首先简述了SVPWM算法的基本原理,然后详细解释了脉冲电池加热算法的工作机制,即通过控制电机运转产生脉冲电流对电池进行加热,以维持电池的最佳工作温度。接着展示了在Simulink环境中搭建的仿真模型,包括永磁同步电机、SVPWM算法模块和脉冲电池加热模块。通过对不同条件下电机运转和电池加热过程的模拟实验,验证了所提出的脉冲电池加热算法的有效性,能够在低温环境下快速提升电池温度并防止高温损伤。最后指出该研究成果现阶段主要用于学术探讨和技术预研。 适合人群:从事新能源汽车技术研发的专业人士,尤其是关注电池管理系统优化方向的研究者。 使用场景及目标:适用于需要深入了解电动汽车电池热管理系统的工程师和技术爱好者,旨在探索提高电池性能的方法。 其他说明:文中提供了部分代码片段作为参考,鼓励更多科研工作者参与相关领域的深入探究。
2025-11-04 15:59:02 745KB
1
生物信息学是生物学与信息科学相结合的一门交叉学科,它的研究内容涉及从生物大分子的序列数据分析到复杂生物系统的计算建模。其中,序列比对是生物信息学中的核心内容之一,它涉及对生物大分子序列,如DNA、RNA和蛋白质序列的比较分析,目的是识别序列之间共享的相似性与差异性,从而推断它们之间的功能和进化关系。序列比对通常分为全局比对和局部比对两大类。全局比对关注于比较两条序列的全长,而局部比对则关注于序列中的相似区域,即“保守序列”。 在生物信息学的研究与实践中,序列比对技术已经广泛应用于基因的鉴定、物种进化关系的研究以及新药靶标的发现等领域。为了实现序列比对,科学家们开发了许多不同的算法,比如动态规划算法就是其中的一种基础算法。动态规划算法通过将序列比对问题转化为在二维矩阵中寻找最优路径的问题,最终找到两条序列之间的相似度最高的一对比对。 除了动态规划算法之外,生物信息学中还广泛应用启发式算法来处理大规模的序列比对问题。启发式算法如BLAST(Basic Local Alignment Search Tool)算法,它能够快速地在数据库中搜索与给定序列相似的序列。BLAST通过构建索引和局部比对方法,有效地处理了数据库中大量的序列信息,使得研究人员能够迅速地获取可能具有生物学意义的序列片段。 除此之外,为了应对蛋白质序列比对的特殊性,还开发了针对于蛋白质序列的比对算法,如Smith-Waterman算法。Smith-Waterman算法是一种用于局部序列比对的动态规划算法,它能够在不考虑序列两端对齐的情况下,找到序列中最相似的片段。 序列比对算法的发展也在不断地推动生物信息学其他领域的研究进展,如系统发育分析、蛋白质结构预测和基因组学等。例如,基于序列比对的系统发育分析能够通过构建序列的进化树来推断物种之间的进化关系。蛋白质结构预测则通过比对已知蛋白质结构的数据库来预测新蛋白质的可能三维结构。 随着计算能力的提升和算法的不断优化,序列比对的方法和应用正在不断扩展。新的算法不仅提高了比对的速度,也提高了比对的灵敏度和特异性。例如,近年来,基于深度学习的序列比对方法也逐渐成为研究热点。深度学习模型,尤其是卷积神经网络(CNN)和循环神经网络(RNN),已经在图像识别和自然语言处理等领域取得了显著的成果,在生物序列比对领域也显示出巨大的潜力。 生物信息学的未来发展中,序列比对与算法将继续是重要的研究方向。随着基因组测序技术的不断进步和生物数据量的爆炸式增长,如何有效地处理和分析这些数据,提取其中的生物学信息,将是科研人员面临的巨大挑战和机遇。因此,研究和开发新的序列比对算法,提升序列分析的准确性和效率,对于推动生命科学的发展具有至关重要的作用。
2025-11-03 15:55:43 6.85MB
1
内容概要:本文探讨了匝道合流控制的序列优化及其控制算法,主要涉及三种不同控制场景的对比研究。首先是无控制场景,即不干预车辆合流,完全依赖SUMO自带算法;其次是先入先出(FIFO)加哈密顿最优控制,按到达顺序管理车辆并用哈密顿算法优化控制信号;最后是蒙特卡洛优化加哈密顿最优控制,利用蒙特卡洛算法优化车辆合流序列再施加哈密顿控制。文中提供了每种情况的具体代码示例,便于理解和实践。 适合人群:交通工程专业学生、智能交通系统研究人员以及对交通流量优化感兴趣的开发者。 使用场景及目标:适用于城市交通规划部门、智能交通系统的设计与实施团队,旨在提高匝道合流效率,减少交通拥堵,提升道路通行能力。 其他说明:虽然文档中有详细的代码示例,但缺少用于数据可视化的绘图程序,因此使用者需要自行补充这部分内容以便更好地展示实验结果。
2025-11-02 19:58:42 1.35MB
1
基于卡尔曼滤波算法实例仿真
2025-11-02 17:32:05 1KB matlab
1
CMU_15-445_数据库系统课程项目_基于BusTub_RDBMS_实现四个核心模块_包括时钟替换算法与缓冲池管理_哈希索引构建与优化_查询执行引擎开发_以及日志记录与恢复机制.zip嵌入式图形库与LCD屏驱动开发
2025-11-02 02:46:57 309KB python
1
FDTD(时域有限差分)仿真模型的建立及其在光子器件设计中的应用,重点探讨了逆向设计中的多种算法,如二进制算法、遗传算法、粒子群算法和梯度算法。首先,文章解释了FDTD的基本原理,包括仿真区域和边界条件的确定、网格划分、初始条件设定以及麦克斯韦方程的求解步骤。接着,阐述了逆向设计的概念及其在光子器件优化中的重要性,并具体介绍了四种算法的工作机制。最后,展示了这些技术和算法在实际光子器件(如分束器、波分复用器、二极管、模式滤波器、模分复用器等)的设计与仿真中的应用实例。 适合人群:从事光子学研究的技术人员、高校相关专业师生、对光子器件设计感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解FDTD仿真技术及逆向设计算法的研究人员,旨在提高光子器件的设计效率和性能优化能力。 其他说明:文中不仅提供了理论背景,还结合了具体的案例分析,有助于读者更好地理解和掌握相关技术的实际应用。
2025-11-01 21:30:11 254KB FDTD 遗传算法 粒子群算法 逆向设计
1
内容概要:本文探讨了在并网模式下,如何运用粒子群算法进行微电网的经济调度,并特别关注储能调度在其中的关键作用。首先介绍了微电网面临的挑战,即如何合理调度内部资源以实现经济性和稳定性。接着详细解释了粒子群算法的工作原理及其在电力负荷分配和电源调度中的应用,展示了通过模拟生物群体行为找到最优解的方法。最后强调了储能调度对于平衡供需关系、降低成本以及提高供电稳定性和可靠性的重要性,提出了高峰时段放电、低谷时段充电的具体策略。 适合人群:从事电力系统研究、微电网建设和管理的专业人士,以及对智能算法在能源领域应用感兴趣的科研人员和技术爱好者。 使用场景及目标:适用于希望深入了解并网模式下微电网经济调度方法的研究者和技术人员,旨在帮助他们掌握粒子群算法和储能调度技术,从而提升微电网的运行效率和经济效益。 其他说明:文中还提供了一段关于粒子群算法的伪代码,便于读者理解和实践。
2025-11-01 13:26:35 406KB
1