QTP11补丁发布 - 支持IE9浏览器识别 ====================================================================== Patch Description and Technical Details ====================================================================== This patch provides official support for testing Web applications in Internet Explorer 9. It includes support for working with Internet Explorer 9 on all operating systems that QuickTest Professional supports. (For the complete list of supported operating systems, see the QuickTest Professional 11.00 Product Availability Matrix, which is available from the Documentation Library Home page or the root folder of the QuickTest Professional DVD.) Notes: 1. The BHOManager add-on should be enabled. If Internet Explorer 9 displays the message: 'Speeding up browsing by disabling add-ons', choose 'Don't disable' or select a bigger threshold value. 2. The RunScript/RunScriptFromFile method of Page and Frame test objects will not display a dialog box for window.alert, window.confirm, and window.prompt statements in the JavaScript. The rest of the JavaScript will run. 3. When using a Web Add-in Extensibility-based Add-in, if the JavaScript for an operation includes an _util.Alert statement, this statement will not work (will not display a dialog box).
2026-01-31 13:56:17 11.1MB
1
国科大计算机学院模式识别与机器学习黄庆明等 历年期末考试题
2026-01-28 19:50:49 13.85MB 机器学习 模式识别
1
交通物体检测与实例分割 本项目基于YOLOv8框架,能够对交通物体进行检测。对图片能检测到物体并用锚框进行标注展示,对于视频则是对每一帧进行物体检测分析,同样使用锚框进行标注,最终生成的物体检测视频能实时追踪物体并用不同颜色框进行标注展示。 用户除了选择常规的模型进行物体检测之外,还可以使用专门进行实例分割的模型。在训练预测之后,可以得到不同的物体。与单纯的物体检测有些不同,实例分割能够对物体的轮廓进行较为精细的标注,并将整个物体以特定的颜色进行标注,相比于普通的物体检测能够产生更精细且更好的可视化效果。 交通轨迹识别 本项目能够对导入的交通视频进行物体检测,通过物体的id标注,视频的逐帧分析,捕捉每个物体对应的实时位置,同时绘制位置点到视频中,最后整合能够生成带有绘制物体轨迹的视频,实现交通车辆的轨迹识别。 车辆越线计数 在进行车辆跟踪,轨迹绘制的基础上,本软件还能对车辆进行越线计数。在视频的关键处,可以绘制分界线,当车辆越过该线时,通过逐帧捕捉车辆坐标信息,对应id后能够进行车辆计数值的自增,实现越线计数的功能。 生成交通数据集 在物体轨迹识别的过程,捕捉位置坐标并绘制轨迹时,将不同车辆的位置信息分别记录起来,同时记录车辆id、类别等信息。在视频检测完毕后,对数据进行汇总并做相关处理,能够生成较为理想的交通数据集。 交通数据分析 将生成的交通数据集进行导入,能够进行关键数据的具体分析,包括不同类别物体的检测计数,车辆位置信息等。通过热力图,柱状图等方式直观呈现数据,利于清楚看出数据的各项分布情况。
2026-01-28 15:16:40 214.13MB
1
标题中的“万能验证码识别ok.rar”表明这是一个关于验证码识别的程序,可能包含了一套能够高效识别各种类型验证码的解决方案。描述中提到,这个程序是通过调用一位专家开发的神经网络DLL(动态链接库)在Delphi环境下编写的,具有高达80-90%的识别成功率,能够有效识别大多数的验证码。这暗示了该程序运用了深度学习技术,特别是神经网络模型,以提高验证码的识别准确性。 标签中的“万能验证码识别”意味着这个程序设计的目标是通用性,可以处理多种不同的验证码样式。“验证码识别”是基本功能,“Delphi验证码识别”表明它是用Delphi编程语言实现的,而“Delphi万能识别”则可能意味着这套解决方案不仅限于验证码,还可能涵盖其他类型的图像识别任务。 压缩包内的文件名列表揭示了项目的基本结构和组成部分: 1. **Project1.cfg**:这是Delphi项目的配置文件,包含项目的编译和运行设置。 2. **Unit1.dcu**:这是Delphi的编译单元文件,通常包含了某个源代码文件(如Unit1.pas)编译后的元数据和代码。 3. **Unit1.ddp**:项目文件,存储了关于项目的信息,如源代码文件位置、编译选项等。 4. **Unit1.dfm**:是Delphi的表单文件,保存了用户界面的设计和组件状态。 5. **wk_yzm.dll** 和 **r2yanzhengma_.dll**:这两个是动态链接库文件,很可能就是描述中提到的神经网络DLL,用于实际的验证码识别计算。 6. **Project1.dof**:可能是项目选项文件,包含了项目特定的编译器选项和设置。 7. **Project1.dpr**:这是Delphi的项目源文件,通常包含了项目的主入口点和初始化代码。 8. **Project1.dproj**:这是IDE(集成开发环境)使用的项目文件,用于管理项目构建和调试设置。 9. **Project1.exe**:这是最终的可执行文件,即运行时的验证码识别程序。 综合这些信息,我们可以推断这个项目是一个使用Delphi开发的验证码识别工具,它利用神经网络DLL来处理图像识别任务。用户可能只需要运行Project1.exe,然后通过API或特定接口传递验证码图片,程序就能返回识别结果。开发者通过将复杂的神经网络算法封装在DLL中,使得Delphi程序可以轻松地调用并实现高效识别。对于需要处理大量验证码识别问题的场景,如自动化测试、网络安全或者数据分析等,这样的工具是非常有价值的。
1
本文详细介绍了在联想小新Air-pro13上因Windows更新导致生物识别设备驱动丢失或被卸载后的解决方案。首先,用户需在文件资源管理器中定位到C:WindowsSystem32WinBioPlugInsFaceDriver目录,找到HelloFace.inf文件并右键安装。安装完成后重启系统,检查设备管理器是否恢复生物识别设备。若出现未知设备,需手动浏览电脑以查找驱动程序。此外,文章还提到可能遇到的兼容性问题及解决方法,包括使用pnputil工具重新安装驱动,以及如何以管理员身份运行cmd.exe解决窗口闪退问题。最终,用户成功恢复了人脸识别功能。 生物识别技术是现代信息技术中的一项重要技术,其中人脸识别技术已经广泛应用于各种场景。在实际使用过程中,用户可能会遇到驱动丢失或者卸载的问题,尤其是在进行系统更新后,这会导致生物识别设备无法正常工作。本文详细介绍了在联想小新Air-pro13上因Windows更新导致生物识别设备驱动丢失或被卸载后的解决方案。 用户需要在文件资源管理器中定位到特定的目录,找到并安装HelloFace.inf文件。这一过程是恢复生物识别设备的关键步骤,用户需要确保操作的准确性。安装完成后,重启系统,检查设备管理器是否恢复生物识别设备。在这一过程中,用户需要注意观察设备管理器中的设备状态,以确保驱动恢复成功。 如果在设备管理器中发现有未知设备,用户需要手动浏览电脑以查找驱动程序。这一步骤可能会涉及到对电脑文件系统的深入理解和操作,用户需要根据自己的设备类型和系统情况,找到相应的驱动程序进行安装。这一过程可能比较复杂,但只要用户按照正确的步骤操作,就有可能成功恢复生物识别设备。 在使用过程中,用户可能会遇到各种兼容性问题。为了解决这些问题,文章提出了使用pnputil工具重新安装驱动的方法。这一工具是Windows系统中用于管理设备驱动的一个重要工具,用户可以通过它来解决驱动的兼容性问题。此外,如果用户在使用过程中遇到窗口闪退的问题,可以尝试以管理员身份运行cmd.exe来解决。这一方法可以提升用户的操作权限,从而有效解决兼容性问题。 最终,通过上述方法的实施,用户能够成功恢复在联想小新Air-pro13上的人脸识别功能。这一过程不仅涉及到了设备驱动的安装和恢复,还涉及到对系统工具的使用和操作权限的管理,是对用户操作能力的一次考验。通过这一过程,用户不仅可以恢复生物识别设备的功能,还可以提升自己的电脑操作技能。
2026-01-25 14:29:24 5KB 软件开发 源码
1
本文全面探讨了LLM-Agent意图识别的精准度提升方案,从技术方法论、数据优化到复杂场景应对策略。报告指出意图识别是自然语言理解的核心,需结合规则匹配、传统机器学习和LLM的混合架构。高质量数据集构建、少样本学习和持续优化闭环是关键。针对语言歧义、多轮对话等复杂场景,提出了消歧义主题、上下文管理等解决方案。最后提供了技术选型建议和评估指标,强调数据优先、混合架构和持续优化的综合方案是实现高精准意图识别的有效路径。 在自然语言处理领域,意图识别技术一直是一个核心研究课题,其准确性直接影响着用户交互体验的优劣。本文深入解析了LLM-Agent意图识别技术的精准度提升方案,提出了一系列的技术方法论和策略,涵盖从数据优化到复杂场景应对的多个层面。 报告明确指出,意图识别作为自然语言理解的关键部分,不仅仅需要传统的机器学习技术,更应该融合LLM(Large Language Models)的强大能力,形成一种混合架构。这种架构既能够利用传统机器学习的成熟性,又能够借助LLM的泛化能力和上下文理解能力。 高质量的数据集构建是意图识别技术成功的关键。在数据处理方面,本文强调了少样本学习的重要性,即在有限的训练样本下,如何通过有效的方法提升模型的表现,这一点对于解决特定领域的意图识别尤为关键。 在应对语言歧义和多轮对话的复杂场景时,本文提出了一系列创新的解决方案。对于语言歧义问题,提出了消歧义主题的方法,通过深入分析上下文信息和用户意图,减少理解上的误差。针对多轮对话的场景,通过动态上下文管理策略,有效地管理和利用对话历史信息,提高意图识别的连贯性和准确性。 技术选型和评估指标的提出,为意图识别技术的实施提供了明确的指导。报告建议,在技术选型时应该优先考虑数据优先的原则,选择那些能够最大化利用高质量数据集的模型和算法。同时,持续优化闭环机制是保持技术先进性的重要手段,需要不断地对模型进行评估和调整。 报告总结强调了混合架构和持续优化的重要性,这不仅是一种技术实现路径,更是提升意图识别精准度的有效策略。通过采用这种综合方案,可以在各种复杂场景下保持意图识别技术的高精准度,进而提高用户的满意度和产品的竞争力。 这篇报告不仅对意图识别技术进行了深入的分析和研究,而且为实际操作提供了具体的方法和建议,对于希望提升其自然语言处理能力的技术开发者和企业具有很高的实用价值。
2026-01-25 09:42:28 5KB 软件开发 源码
1
易语言OcrKing在线识别模块源码,OcrKing在线识别模块,彗星HTTP读文件,彗星打开指定网址,网页_访问,网页_Cookie合并更新,文本_去重复文本,内部_数组成员是否存在_文本,内部_Cookie取值,内部_Cookie取名,内部_数组成员是否存在1,内部_协议头取值,内部_协议头取
2026-01-23 22:05:41 16KB 彗星HTTP读
1
附件结合博客《Halcon 识别与X-AnyLabeling 自动标注 结合探索》一起看 附件清单为: 1、测试图片(标记.jpg) 2、对应的X-AnyLabeling生成的json文件(标记.json) 3、halcon源码因版本兼容,txt格式复制粘贴使用 在当今的图像处理领域中,Halcon软件因其强大的图像识别能力而广受欢迎。Halcon不仅能够处理各种复杂的视觉任务,还能通过编程实现高效的图像识别算法。与此同时,随着自动标注工具的不断完善,将Halcon的图像识别功能与自动标注软件如X-AnyLabeling结合使用,已经成为行业内的一个热门探索方向。X-AnyLabeling作为一个功能强大的图像标注工具,能够帮助用户快速地标注出图像中的关键元素,并以json格式输出这些标注信息。这些信息不仅包括了对象的类别,还可以详细描述对象的形状、位置等特征,为Halcon的图像识别提供了一种标准化的数据接口。 在实际应用中,将Halcon的识别能力与X-AnyLabeling的标注功能相结合,可大幅提高图像处理的效率和准确性。利用Halcon强大的图像处理算法,可以实现对特定场景的快速识别和分析。比如,在工业视觉检测领域,Halcon可以通过识别产品上的瑕疵、尺寸、颜色等特征来确保产品质量。而当这些特征需要被标注和记录下来时,X-AnyLabeling便发挥作用了。用户可以利用X-AnyLabeling为每一张检测到的瑕疵图片生成对应的标注信息,这些信息以json格式保存,方便后续的数据管理和分析。 随着深度学习技术的不断进步,Halcon也在不断引入新的算法来提升其图像识别的能力。在某些情况下,Halcon的深度学习工具箱可以用于训练和部署自定义的图像识别模型。而X-AnyLabeling也可以通过调整其标注工具和界面来满足特定任务的需求,比如自定义标注模板和添加新的标注类型。这样,通过Halcon和X-AnyLabeling的联合使用,开发者不仅可以快速构建和验证新的图像识别模型,还能高效地为这些模型准备训练和验证所需的标注数据集。 在探索Halcon与X-AnyLabeling结合的过程中,还有一个重要的方面就是版本兼容性问题。由于软件更新可能会导致原有代码不再兼容,因此,保留旧版本的Halcon源码非常重要。在给定的压缩包文件中,提供了Halcon源码的txt格式文件,这使得用户即使在新版本Halcon环境下,也能够复制并粘贴使用旧版本的代码,从而保证了实验和应用的连续性和稳定性。 Halcon与X-AnyLabeling的结合为图像识别与自动标注提供了一个高效、可靠的解决方案。这一结合不仅提高了图像处理的自动化水平,也缩短了开发周期,使得开发者可以更专注于图像识别算法的创新和优化,而非基础的数据标注工作。在未来,随着图像识别技术与标注工具的进一步发展,我们可以预见,这种结合将被广泛应用于更多的实际场景中。
2026-01-22 22:10:54 1.19MB json
1
使用固定的摄像头,对准桌面,背景采用纯色,推荐白色。要求将螺丝和螺母放到摄像头视场内,对其进行识别与定位,在视频中圈出螺丝与螺母位置,并给出质心位置,并说明种类(螺丝或螺母)。推荐流程:降、二值化、形态学处理、包络及轮廓分析、特征分析、识别、质心求取。 (1)每一步图像处理有对应窗口输出 能够提取螺丝螺母的位置(2) 能够准确识别螺丝螺母并给出质心,方案合理(3) (4)友好的图形化界面
2026-01-22 11:20:03 67.65MB opencv
1
飞桨,全称百度飞桨,是中国百度公司推出的深度学习平台,它包含了一系列开发工具、服务和支持,旨在降低人工智能应用的开发门槛,同时提供丰富的模型库、开发套件和部署工具。在飞桨平台上,开发者可以利用其提供的深度学习框架,快速构建和训练人工智能模型。身份证识别作为人工智能领域的一个重要应用场景,涉及到图像处理、模式识别、机器学习等多个技术层面,是人工智能技术在日常生活中的具体应用之一。 身份证识别技术主要通过图像识别技术,实现对身份证上的文字信息和人像信息的自动提取和识别。这一技术可以广泛应用于金融、公安、酒店、网吧、交通等多个行业和场景中,以自动化处理身份验证、身份登记、个人信息录入等手续,提高工作效率,减少人为错误,增强信息安全。身份证识别的数据集是训练该类识别模型的基础资源,通常包含大量带有身份证信息的图片和对应的标注信息,这些标注信息可能包括身份证上的人名、身份证号、性别、民族、出生日期、住址等个人信息,以及身份证的种类、有效期等信息。 由于身份证上含有个人敏感信息,因此在进行身份证识别技术研究和应用时,需要严格遵守相关法律法规,确保个人信息安全,防止信息泄露。同时,在实际应用中还需要对识别技术进行不断地优化和升级,以提高识别的准确度和处理速度,确保系统的稳定性和可靠性。 在本次提供的“飞桨身份证识别数据集(数据是造过的)”中,虽然数据是造过的,但仍然可以为研究者和开发者提供一个模拟环境,用于测试和训练身份证识别模型。通过这个数据集,研究人员可以在模拟的场景下,对模型进行训练,而不用担心泄露真实的个人信息。数据集中的图片文件,例如2990.jpg、0677.jpg等,是训练数据集中的样本,它们被用作训练模型的输入图像。通过机器学习算法对这些图像进行处理,模型可以学习到如何识别图像中的文字和人像信息,最终实现对真实身份证信息的自动识别。 在实际应用中,身份证识别技术通常会集成到不同的系统中,比如门禁系统、网上身份验证系统等,用户只需上传身份证图片,系统便会自动完成信息的提取和验证。随着技术的发展,身份证识别技术也在不断地进步,其准确性和可靠性也在持续提高,为各行各业的数字化转型提供了有力的技术支持。 身份证识别技术的应用,除了提高效率和安全性的实际价值之外,也反映出了人工智能技术在实际生活中的广泛应用前景。在不断发展的未来,人工智能技术将更多地渗透到人们的日常生活中,为人们带来更多便利和安全。
2026-01-19 18:33:30 159.21MB
1