两个新颖的基于钨硼酸盐与咪唑的杂化化合物,安海艳,郑慧,本文合成了两个新的基于钨硼酸盐的杂化化合物,(HIm)12[MnBW11O39H]2•13H2O 1 和(HIm)(Im)[(Im)4Zn]2[BW12O40]•2H2O 2 (Im = 咪唑)。利用单晶X-
2025-05-11 17:09:42 431KB 首发论文
1
传统A*算法与创新版对比:融合DWA规避障碍物的仿真研究及全局与局部路径规划,1.传统A*算法与改进A*算法性能对比?改进A*算法融合DWA算法规避未知障碍物仿真。 算法经过创新改进,两套代码就是一篇lunwen完整的实验逻辑,可以拿来直接使用 改进A*算法做全局路径规划,融合动态窗口算法DWA做局部路径规划既可规避动态障碍物,又可与障碍物保持一定距离。 可根据自己的想法任意设置起点与终点,未知动态障碍物与未知静态障碍物。 地图可更改,可自行设置多种尺寸地图进行对比,包含单个算法的仿真结果及角速度线速度姿态位角的变化曲线,仿真图片丰富 绝对的高质量。 ,关键词:A*算法; 改进A*算法; 算法性能对比; 融合DWA; 局部路径规划; 全局路径规划; 障碍物规避; 地图设置; 仿真结果; 姿态位角变化曲线。,"改进A*算法与DWA融合:全局路径规划与动态障碍物规避仿真研究"
2025-05-09 00:18:58 898KB
1
【51单片机基础知识】 51单片机是微控制器的一种,由英特尔下属公司INTEL8051发展而来,广泛应用于各种嵌入式系统中。它具有8位CPU、128字节的内部RAM、4KB的可编程只读存储器(EPROM)以及若干个I/O端口。51单片机的特点包括结构简单、易于编程、性价比高等,使其成为初学者和工程应用的理想选择。 【频率测量】 在51单片机中,测量频率通常涉及计数器或定时器。51单片机有四个可编程定时器/计数器(Timer0、Timer1、Timer2和Timer3),其中Timer0和Timer1支持16位计数,而Timer2是8位计数。通过配置这些定时器的工作模式,可以利用它们捕获外部输入信号的周期,进而计算频率。例如,可以设置定时器在每个时钟周期增加,当达到预设值时产生中断,然后重置并重新开始计数,通过计数次数和时间间隔即可得出频率。 【占空比测量】 占空比是脉冲宽度与整个周期的比例,用于描述脉冲信号的“开”状态持续时间。在51单片机中,可以利用定时器或中断来测量脉冲的高电平和低电平持续时间。当检测到脉冲的上升沿或下降沿时启动定时器,当检测到相反的边缘时停止定时器,两个定时器值之差即为占空比的测量基础。 【数码管显示】 数码管是一种常见的七段显示器,用于显示数字和一些特殊字符。51单片机通常使用GPIO端口控制数码管的各个段,通过驱动电路使每个段亮或灭来组合出不同的数字。数码管显示可以采用静态显示或动态扫描显示方式,静态显示所有段同时导通,而动态扫描则逐个点亮段,通过快速切换来实现视觉上的同时显示,从而节省I/O资源。 【外部中断】 外部中断是51单片机接收外部事件的一种机制。51单片机有两个独立的外部中断源:INT0和INT1,它们可以通过引脚INT0(P3.2)和INT1(P3.3)触发中断。当这两个引脚上的电平发生变化时,如果中断被允许,单片机会立即停止当前执行的程序,转而去执行对应的中断服务子程序。在51单片机的中断系统中,需要设置中断允许寄存器(IE)和中断优先级寄存器(IP)来控制中断的启用和优先级。 【课设项目实施】 结合以上知识点,该课设项目可能要求设计一个系统,能够实时测量两路外部输入信号的频率和占空比,并将结果显示在数码管上。这需要对51单片机的定时器、中断、数码管显示等硬件接口有深入理解,并能编写相应的C语言程序。在编程时,要确保正确配置中断服务子程序,合理安排定时器计数,以及有效地控制数码管的显示更新,以实现稳定且准确的测量结果。此外,还需要考虑系统的抗干扰能力和稳定性,确保在实际操作中能够可靠地工作。
2025-05-08 20:27:13 172KB 51单片机
1
本文的研究主题是基于滑动窗口技术对两类运动想象脑电信号的神经网络识别研究。脑电信号(EEG)是一种生物电活动的直接测量,能够反映大脑的电生理变化,通常被用于脑-机接口(Brain-Computer Interface, BCI)系统的开发。本文特别关注了运动想象EEG信号的分类问题,即如何准确地通过算法区分和识别被试者在想象不同运动时产生的EEG信号。 文章提到使用信号加窗处理技术。信号加窗是一种在信号处理中常用的方法,它通过在一个有限的时间窗口内分析信号,来提取有用特征,抑制噪声和无关信号。滑动窗口是其中一种特殊的加窗方式,它能够在连续的信号上移动,对信号的每一部分都能进行相应的分析处理。窗口宽度是滑动窗口方法的一个重要参数,它决定了信号分析的分辨率和敏感度。窗口太宽可能会忽略信号的细节变化,而窗口太窄又可能会引入过多的噪声。 在传统的信号处理中,滑动平均法是一种常用的降噪和特征提取技术,通过对滑动窗口内的信号取平均值,以简化信号并突出其趋势。这种方法通常用于获取信号的粗略特征,而忽略高频噪声。然而,在某些情况下,滑动平均法可能会损失重要的瞬态信息。 神经网络作为一种强大的机器学习工具,具有出色的综合分析能力和非线性分类能力,已被广泛应用于脑电信号的分析和识别。神经网络通过模拟人脑神经元的工作方式,可以处理大量复杂的数据,并在数据中找出潜在的规律。在BCI系统中,神经网络可以用于训练分类器,将输入的EEG信号映射为特定的控制命令。 在本文的研究中,作者将滑动窗口技术与神经网络结合,试图通过这种方式提高对运动想象EEG信号分类的准确性。研究表明,这种结合方法可以有效地提升信号识别的效果,并且能够产生更稳定的结果。作者还发现,识别效果受到窗口宽度的影响,不同的窗口宽度设置可能会对最终的分类结果产生显著的影响。因此,选择合适的窗口宽度对于优化识别性能具有重要作用。 文章最后提到了研究的进一步方向,即如何将这一方法更好地应用于脑电识别。这可能包括窗口宽度的选择、神经网络结构的设计、以及如何处理和分析EEG数据以获得更准确的分类结果等方面。此外,研究还涉及到如何处理和优化非平稳复杂的生理信号,以及如何利用神经网络的强大功能来提取更为精确和丰富的特征。 这项研究展示了滑动窗口技术与神经网络结合在运动想象EEG信号识别方面的潜力,提供了提高脑电特征提取和分类效果的新思路,对于脑-机接口技术的发展具有重要意义。
2025-05-08 14:06:51 622KB 首发论文
1
数学建模论文 ****************************************************************************************************** 附件为两篇数学建模的论文,一篇MCM数学建模论文和一篇工大出版社杯数学建模论文,中文的是校赛一等奖论文;英文的是美赛二等奖论文; ****************************************************************************************************** 非常好的资源,供学习借鉴参考!
2025-05-08 11:46:58 2.88MB 毕业设计 数学建模论文
1
风电并网是指将风力发电系统接入公共电力系统中,从而实现风能作为一种可再生能源在电网中的有效利用。随着技术的发展,风力发电已成为全球可再生能源领域发展最快的行业之一。为了提高风电在电力系统中的运行稳定性,风电机组的调频控制技术显得尤为重要。调频控制可以保证风电并网后电网的频率稳定,使风力发电机组在电网频率波动时能够有效地调节发电功率,以适应电网负荷的变化。其中,四机两区系统是一个典型的电力系统模型,它包括四个发电机和两个区域,是研究电力系统稳定性和控制策略的重要工具。 在进行风电并网及调频控制的研究时,通常使用MATLAB这类科学计算软件来进行建模和仿真。MATLAB提供了丰富的工具箱,能够对电力系统的动态过程进行模拟分析。例如,Simulink模块库可以用来搭建复杂的动态系统模型,并进行仿真,从而直观地观察系统的动态响应。通过使用MATLAB进行风电并网的研究,可以模拟实际风电场的运行状况,对不同并网策略进行分析,找出最优的并网方案。 风电并网技术分析与四机两区系统并入风电策略的研究,涉及到系统稳定性分析、控制策略设计、模型建立、系统仿真等多个方面。在系统稳定性方面,研究者关注如何在风电大规模并网的情况下,保持电力系统的稳定运行。这包括电网的电压稳定性、暂态稳定性以及频率稳定性等。控制策略设计则关注于如何设计有效的控制算法,使得风电场在并网后能够平滑地调整出力,以满足电网调度的需求。此外,风电并网技术在环境下的应用研究,还需要考虑如何减少风电并网对周围环境的影响,比如电磁干扰、噪音控制等。 调频控制策略的研究主要集中在如何通过控制策略来提高风电并网后系统的调频能力,包括频率的快速响应和准确调整。调频控制策略能够使风电场在电网负荷变化时,及时调整输出功率,以此来稳定电网频率。而风电并网中的调频控制研究,还需关注风电自身的不确定性对电网稳定性的影响。风速的随机性、风电机组的动态特性等因素都会对风电并网的调频控制带来挑战。 风电并网是一个复杂的工程问题,它不仅涉及到风电技术本身,还涉及到电力系统稳定性的控制策略,以及对环境影响的评估。通过使用MATLAB等仿真工具,结合理论分析与实际应用,可以为解决这一问题提供有效的技术支持和解决方案。
2025-05-06 10:02:16 967KB kind
1
### 详解Python修复遥感影像条带的两种方式 #### 一、背景介绍 在遥感影像处理领域,经常会遇到由于各种原因导致的影像质量问题,其中一条常见的问题就是“条带”现象。条带(Stripes)是指在遥感影像上出现的一系列平行于扫描方向的明暗不均的带状区域,这种现象会严重影响影像的质量,进而影响后续的数据分析与应用。本文主要介绍了使用Python修复遥感影像条带的两种方法:一是基于GDAL库的方法,二是基于OpenCV库的方法。 #### 二、GDAL修复Landsat ETM+影像条带 **1. 背景** Landsat 7 ETM+(Enhanced Thematic Mapper Plus)卫星自1999年开始运行以来,为全球提供了大量高质量的多光谱遥感影像。然而,2003年5月后,由于扫描线校正器(Scan Line Corrector, SLC)故障,导致获取的影像中出现了明显的条带现象。这些条带严重影响了影像的质量,因此需要对其进行修复。 **2. GDAL修复条带的实现原理** GDAL(Geospatial Data Abstraction Library)是一款开源的地理空间数据管理和处理库,它支持多种格式的地理空间数据文件,并提供了一系列工具和API用于数据处理。GDAL中的`FillNodata`函数可以用于填充影像中的无效值,从而修复条带等缺陷。 **3. 代码实现** ```python import gdal from tqdm import tqdm def gdal_repair(tif_name, out_name, bands): """ 使用GDAL修复遥感影像条带 参数: tif_name (string): 源影像名称 out_name (string): 输出影像名称 bands (integer): 影像波段数 """ # 打开影像文件 tif = gdal.Open(tif_name) # 获取驱动程序 driver = gdal.GetDriverByName('GTiff') # 创建新影像 new_img = driver.CreateCopy(out_name, tif, 0) for i in tqdm(range(1, bands + 1), desc="Processing Bands"): # 获取当前波段 band = new_img.GetRasterBand(i) # 使用FillNodata对条带部分进行插值 gdal.FillNodata(targetBand=band, maskBand=band, maxSearchDist=15, smoothingIterations=0) # 将修复好的波段写入新数据集中 new_img.GetRasterBand(i).WriteArray(band.ReadAsArray()) # 示例调用 tif_name = "path/to/input.tif" out_name = "path/to/output.tif" bands = 7 # Landsat 7 ETM+通常有7个波段 gdal_repair(tif_name, out_name, bands) ``` **4. 效果展示** 修复后的影像将不再存在明显的条带现象,影像质量得到显著提升。 #### 三、OpenCV修复Landsat ETM+影像条带 **1. 背景** OpenCV(Open Source Computer Vision Library)是一个开源计算机视觉和机器学习软件库。虽然它主要用于计算机视觉任务,但在某些情况下也可以用于遥感影像处理。 **2. OpenCV修复条带的实现原理** OpenCV中的`inpaint`函数可以用来修复图像中的缺陷区域。这个函数通过分析周围的像素信息来进行修复,适用于修复较小的区域。 **3. 代码实现** ```python import gdal_array import numpy as np import cv2 from tqdm import tqdm def cv2_repair(tif_name): # 读取tif影像 tif_data = gdal_array.LoadFile(tif_name).astype('float32') # 获取掩膜 mask = tif_data.sum(axis=0) mask = (mask == 0).astype(np.uint8) bands = tif_data.shape[0] res = [] for i in tqdm(range(bands), desc="Processing Bands"): # 使用OpenCV的inpaint函数 repaired = cv2.inpaint(tif_data[i], mask, 3, flags=cv2.INPAINT_TELEA) res.append(repaired) return np.array(res) # 示例调用 tif_name = "path/to/input.tif" repaired_data = cv2_repair(tif_name) ``` **4. 效果展示** 使用OpenCV修复条带后,可以看到虽然处理速度较慢,但是修复效果更佳,影像整体质量更高。 #### 四、总结 通过对以上两种方法的对比可以看出,GDAL的方法更适合快速处理大量的遥感影像,而OpenCV的方法则更加注重修复效果的质量。在实际应用中,可以根据具体需求选择合适的方法进行遥感影像的条带修复处理。
2025-05-03 17:54:34 721KB Python 遥感影像条带
1
基于Simulink的直升机非线性动力学模型与仿真:黑鹰单旋翼直升机气动模型源码详解及使用说明两篇文献参考,Simulink直升机非线性动力学模型,直升机动力学仿真,MATLAB Simulink版本,黑鹰单旋翼直升机气动模型,包含源码。 有两篇说明文献和使用说明, ,核心关键词:Simulink直升机非线性动力学模型;直升机动力学仿真;MATLAB Simulink版本;黑鹰单旋翼直升机气动模型;包含源码;说明文献;使用说明。,Simulink黑鹰单旋翼直升机非线性动力学模型与仿真 直升机非线性动力学模型及其仿真研究是航空工程领域中的一项重要课题。在现代航空技术中,直升机作为多功能、高机动性的飞行器,其动力学模型的精确性对于飞行控制系统的设计、性能分析以及飞行安全都有着至关重要的影响。尤其在进行直升机的非线性动力学模型研究时,需要综合考虑直升机的旋翼、机身、尾翼等多种部件的相互作用以及与环境的交互影响。 非线性动力学模型是指在动力学系统中,系统的行为不仅仅是由初始条件决定,还受到系统内部非线性因素的影响。直升机的非线性特性主要来源于旋翼的非线性气动特性、非线性动力系统与控制系统的相互作用等。为了准确地描述和分析这些非线性因素,通常需要构建复杂的数学模型,并通过仿真技术来验证模型的有效性。 Simulink是MATLAB的一个集成环境,广泛应用于多域仿真和基于模型的设计。它提供了图形化的建模、仿真和分析环境,可以模拟各种动态系统的功能和行为。在直升机非线性动力学模型的构建与仿真中,Simulink能够有效地模拟直升机在不同飞行状态下的动态响应,包括起飞、悬停、飞行和着陆等过程。 Simulink直升机非线性动力学模型涉及的关键技术包括:旋翼的动力学建模、飞行器的运动学建模、控制系统的设计以及气动模型的建立。在建立气动模型时,需要考虑空气动力学原理,如升力、阻力和侧向力等,以及它们对直升机飞行性能的影响。此外,仿真研究还包括验证模型的准确性,这通常涉及与实际飞行数据的对比分析。 本研究包含了对黑鹰单旋翼直升机气动模型的源码详解及使用说明,这为理解直升机的气动特性和非线性动力学行为提供了关键的技术支持。通过源码的分析,研究者可以深入理解直升机模型的构建过程,了解如何通过编程在Simulink中实现直升机的非线性动力学特性。 该研究还涉及了仿真模型的使用说明,这些说明对于工程师和研究人员在实际应用中操作模型、进行仿真测试以及修改和优化模型参数提供了指导。通过这些文档,可以更好地理解和运用Simulink工具箱来模拟直升机的飞行情况,进而设计出更加安全可靠的飞行控制系统。 仿真技术的应用不仅限于研究和开发阶段,在直升机的飞行训练和维护中也发挥着重要作用。利用基于Simulink的仿真模型,可以进行虚拟飞行训练,降低实际飞行训练中的风险和成本。同时,仿真模型还可以用于故障诊断和性能分析,帮助工程师及时发现并解决问题,提高直升机的维护效率和可靠性。 基于Simulink的直升机非线性动力学模型与仿真研究对于深入理解直升机的飞行特性、提高直升机的设计水平和飞行安全性具有重大意义。通过仿真技术,可以在虚拟环境中对直升机进行全面的测试和分析,为直升机的实际应用提供强有力的理论支持和实践指导。
2025-04-30 18:40:30 283KB scss
1
《高等数学》是数学教育中的核心课程,通常包含微积分、线性代数、概率论等基础理论。这里提到的是由同济大学出版社出版的第六版,这是一本被广泛使用的教材,因其深入浅出的讲解和丰富的例题而备受好评。作为教师上课的课件,这份资料无疑为学生提供了深入学习和理解高等数学概念的重要资源。 1. 微积分部分:高等数学的基础是微积分,包括极限、导数、不定积分和定积分等内容。极限是微积分的基石,用来描述函数在某一点的行为;导数是刻画函数变化率的工具,可以用来求解极值问题;不定积分是导数的逆运算,用于原函数的求解;定积分则应用广泛,能解决面积计算、物理问题等。 2. 线性代数:线性代数是现代数学和工程学的重要分支,主要研究向量、矩阵、线性方程组等。这部分内容包括向量空间、线性映射、特征值与特征向量、行列式和矩阵的特征多项式,以及线性空间的基变换等。 3. 复数:复数在解决某些实数无法处理的问题时显得尤为重要,如解二次根式的方程。复数的基本概念、加减乘除法则、共轭复数、复数的极坐标表示和欧拉公式都是学习的重点。 4. 常微分方程:这一部分主要研究微分方程的解法,如分离变量法、变量代换、线性微分方程组、二阶常系数线性微分方程等。常微分方程在物理、工程、生物等多个领域有广泛应用。 5. 概率论与数理统计:虽然这不是传统意义上的高等数学内容,但许多高等数学教材会涉及基础的概率论知识,如随机变量、概率分布、期望、方差、大数定律和中心极限定理等。 6. 实变函数与泛函分析:这部分内容较为高级,主要讨论实数集上的函数性质,如连续性、可积性、测度和勒贝格积分等,同时还会涉及函数空间、泛函的概念和性质。 7. 微分几何与拓扑:微分几何研究曲面和流形的性质,如黎曼几何;拓扑则是研究空间结构的数学分支,不考虑距离只关注连续性。 "1高等数学备课系统"可能包含了以上所有内容的教学材料,包括课件、习题解答、案例分析等,旨在帮助学生理解和掌握高等数学的基本概念、方法和技巧。这样的资源对于初学者来说极其宝贵,不仅可以在课堂之外自我学习,还可以通过反复练习来巩固知识,提高解决问题的能力。
2025-04-30 16:44:48 2.07MB 高等数学 同济大学出版社
1
微穿孔板吸声系数研究:理论计算与comsol仿真分析,多层次结构并联串联影响探究。,微穿孔板吸声系数理论计算,comsol计算,可以算单层,双层串联并联,两两串联后并联的微穿孔板吸声系数。 ,核心关键词:微穿孔板吸声系数; 理论计算; comsol计算; 单层微穿孔板; 双层串联并联微穿孔板; 两两串联后并联的微穿孔板。,"微穿孔板吸声系数:理论计算与Comsol模拟" 在现代声学工程与噪声控制领域中,微穿孔板因其独特的吸声特性而被广泛应用。微穿孔板是一种带有微小孔隙的薄板,这些孔隙能够有效控制声波的传播。通过对微穿孔板吸声系数的研究,可以更好地理解和预测材料的吸声性能,进而优化材料设计和结构布局以达到更好的声学效果。 研究微穿孔板吸声系数涉及到理论计算与仿真分析,这两种方法相辅相成。理论计算可以提供初步的吸声性能预估,而仿真分析则可以通过计算机模拟进一步验证理论计算的准确性。COMSOL Multiphysics软件是一个强大的仿真工具,它可以模拟物理过程中的复杂相互作用,包括声学仿真。利用COMSOL进行微穿孔板吸声系数的仿真分析,可以模拟不同频率下的声波与材料相互作用,从而得到更为精确的吸声系数数据。 此外,微穿孔板吸声结构可以设计成不同的层次和排列方式,例如单层、双层以及多层次的串联或并联结构。每种结构设计都会影响吸声系数的表现,因此深入研究这些结构的吸声性能对于工程应用至关重要。通过理论计算和COMSOL仿真分析,可以探究单层微穿孔板、双层串联并联微穿孔板以及两两串联后并联的微穿孔板的吸声系数差异,为实际工程提供设计参考。 理论计算和COMSOL模拟分析的结合,为研究多层次微穿孔板结构提供了有力的工具。在理论计算方面,通常需要考虑材料的物理参数,如密度、孔隙率、厚度等,以及声波的频率。理论计算可以快速得出吸声系数的初步估算,但可能不足以反映复杂的物理现象。而COMSOL仿真则可以更细致地模拟声波在微穿孔板中的传播、反射、吸收和透射过程,为理论计算提供验证,同时对多层板的吸声性能做出更准确的预测。 在工程实践中,微穿孔板吸声系数的研究对于声学材料的优化和噪声控制方案的制定具有重要意义。了解不同排列方式和结构设计下的吸声性能,可以帮助工程师在设计噪声隔离和消声系统时做出更科学的决策。例如,在建筑工程、车辆噪声控制、工业消声器设计等方面,微穿孔板的应用都是提高吸声效果的关键手段。 微穿孔板吸声系数的研究包括理论计算和仿真分析两个方面。通过结合理论与仿真,可以全面掌握微穿孔板的吸声特性,为声学工程设计提供科学依据。同时,研究多层次结构的影响,如单层、双层以及不同排列方式的微穿孔板,对于提高材料的吸声效率具有实际指导意义。
2025-04-28 08:40:53 658KB csrf
1