通过 OpenCV 加载视频文件 1.mp4,并使用 YOLOv8 模型进行姿态检测。它逐帧处理视频,检测人体关键点并绘制关键点及其连接。具体来说,代码首先加载 YOLOv8 模型并定义了关键点之间的连接关系。然后,它打开视频文件,并读取每一帧进行处理,检测出人体的关键点并绘制在帧上。最后,处理过的帧被写入到一个新的视频文件 out.mp4 中。通过 cv2.VideoWriter 对象将这些帧保存为输出视频,最终完成视频的姿态检测和保存。 在本篇技术文档中,我们将探讨如何利用Python语言结合OpenCV库与YOLOv8模型来实现视频文件中的人体姿态检测。具体步骤包括加载视频文件、加载YOLOv8模型、定义关键点之间的连接、逐帧读取与处理、检测人体关键点、绘制关键点及其连接,并最终将处理后的视频保存。 OpenCV是一个开源的计算机视觉和机器学习软件库,提供了大量的图像处理和视频分析功能。在本例中,我们首先需要使用OpenCV库中的功能来加载视频文件。OpenCV的VideoCapture类可以用来捕获视频文件的每一帧,这是进行帧分析和处理的基础。 接着,YOLOv8(You Only Look Once version 8)是一个先进的实时对象检测系统,它能够快速准确地定位视频帧中的对象。尽管文档中未明确指出,但通常情况下,YOLOv8模型会以预训练的权重文件形式存在,代码首先需要加载这个预训练模型。加载模型后,接下来需要定义关键点之间的连接关系,这涉及到姿态估计的核心部分。通常在姿态估计中,我们关心的是人体关键点,如头、肩膀、肘部、手腕、髋关节、膝盖和脚踝等。YOLOv8模型的输出往往是一系列的坐标点,代表人体关键点的位置。 然后,代码将进入逐帧处理环节。这一步骤需要循环读取视频中的每一帧,并对每一帧运用加载的YOLOv8模型进行关键点检测。在检测到关键点后,需要将这些点绘制在视频帧上,通常会用线条将这些关键点连接起来,以便更好地展现人体的姿态。这一步骤在实际代码中通过调用绘图函数来实现,例如使用OpenCV的circle函数来标记关键点位置,line函数来连接关键点。 完成上述步骤后,每一帧都已添加了标记关键点和连接线的信息。这时,我们需要将这些帧写入到一个新的视频文件中,以便保存最终的姿态检测结果。这通常通过cv2.VideoWriter对象来实现,它允许我们将处理过的帧序列编码并保存为视频格式,如out.mp4。在这一步骤中,需要设置合适的视频编码格式和帧率等参数,以确保输出视频的质量和流畅性。 通过上述步骤,我们可以完成一个视频文件的人体姿态检测,并将结果保存为一个新的视频文件。这一过程不仅涉及到视频处理和计算机视觉知识,也融合了深度学习模型的应用,展示了如何将先进技术应用于现实世界的问题解决中。
2025-12-30 21:20:48 3KB python
1
简要中文翻译: 加载YOLOv8模型进行姿态检测。 定义人体关键点之间的连接关系和颜色。 检测关键点并绘制在视频帧上。 根据关键点之间的关系绘制连接线。 使用摄像头捕获视频并实时进行姿态检测。 显示带有关键点和连接的实时视频流。 按 q 键退出程序。 在深入探讨如何加载YOLOv8模型进行姿态检测之前,首先需要了解YOLOv8模型的背景与姿态检测的含义。YOLO(You Only Look Once)系列是一种流行的目标检测框架,因其速度快和准确率高而被广泛应用于实时视频处理任务中。而姿态检测是计算机视觉的一个分支,它旨在通过算法识别和跟踪人体各个部位的位置,如四肢和躯干等。 在此基础上,我们开始详细介绍如何操作: 1. 加载YOLOv8模型:首先需要获取预训练的YOLOv8模型文件,然后使用适当的数据加载代码将其读入内存。在Python环境中,通常使用像是OpenCV或者PyTorch这样的深度学习库,以方便地导入模型并进行后续处理。 2. 定义人体关键点与颜色映射:人体姿态检测中,关键点通常指的是人体各个关节和身体部位的中心点,如肩膀、肘部、腰部、膝盖等。这些点需要被准确地识别,以便于后续的分析和图形绘制。同时,为了在视频帧中清晰展示关键点,需要为每个关键点定义颜色,并将其映射出来。 3. 关键点检测与绘制:使用加载的YOLOv8模型对视频帧进行处理,模型会输出每个关键点的位置。这些位置信息将被用来在视频帧中绘制标记关键点的图形(通常为圆点)。这个过程需要对视频帧进行逐帧处理,以实现实时的姿态检测。 4. 关键点间连接关系的绘制:在关键点检测并绘制完成后,接下来的工作是根据人体解剖结构,将这些点连接起来。一般会定义一套规则,确定哪些点应该通过线条连接,并使用这些规则绘制出完整的姿态图谱。这一步骤是姿态检测中非常重要的一个环节,它将分散的关键点信息转化为了连贯的人体姿态表示。 5. 实时视频姿态检测:为了实现实时监控和检测,需要使用摄像头作为视频源。通过摄像头捕获连续的视频帧,应用前面提到的关键点检测和绘制算法,实时输出带有关键点和连接线的视频流。这通常需要将整个检测过程封装在一个循环中,并且该循环以固定的频率运行,以保证与视频帧的同步。 6. 控制程序退出:为了方便使用者操作,程序需要响应用户的输入,例如在本例中,按下"q"键可以退出程序。 以上六个步骤共同构成了加载YOLOv8模型进行姿态检测的完整流程,涉及到了从模型加载、关键点定义、视频处理到用户交互等关键技术环节。在实际应用中,还可能会涉及一些额外的优化步骤,比如算法调优、模型训练等,以提高检测的准确率和速度。 整个过程是一个结合了计算机视觉、深度学习和实时视频处理技术的复杂任务,需要多种技术的综合运用才能完成。而通过Python编程语言及其生态中的各类库,可以较为便捷地实现上述功能。
2025-12-30 20:33:59 3KB python
1
实时人体姿势检测是计算机视觉领域的一个重要分支,它能够在视频或图片中快速准确地识别出人体的关键点,并分析出人体的姿态信息。这种技术广泛应用于健身分析、人机交互、视频监控和增强现实等领域。MoveNet Lightning 模型是 TensorFlow 官方推出的一款高效的人体姿势检测模型,其设计初衷是为了提供低延迟、高准确率的实时人体姿势检测能力。 MoveNet Lightning 模型是基于之前发布的 MoveNet Thunder 版本改进而来,相较于 Thunder 版本,Lightning 版本在保持高准确性的同时,大幅降低了模型的复杂度和运算资源消耗,从而在轻量级设备上也能实现良好的实时检测效果。该模型采用 MobileNetV2 作为基础架构,并融入了自适应的多尺度特征融合技术,以更好地处理不同尺寸和距离的人体姿态。 使用 MoveNet Lightning 模型进行人体姿势检测主要涉及以下几个步骤:首先需要准备训练数据集,这通常包括大量带有标记关键点的人体图片。然后,根据需要对模型进行适当的训练和调优,以适应特定的应用场景。在模型训练完成后,开发者可以将训练好的模型部署到各种计算平台,包括服务器、边缘计算设备甚至是移动设备上,实现快速的实时检测。 具体实现时,开发者需要编写 Python 代码,并利用 TensorFlow 或者 TensorFlow Lite 等框架。在代码中,首先要导入 MoveNet 模型相关的库和函数,加载预训练的模型权重。然后通过摄像头或其他视频源捕捉实时画面,并将捕获到的图像传入模型。模型会对每帧图像进行处理,提取人体的关键点,并计算出人体的姿态信息。开发者可以根据这些信息开发出各种应用,例如实时姿态修正、健康监测和交互式游戏等。 值得注意的是,尽管 MoveNet Lightning 模型的性能非常出色,但在实际应用中,开发者仍需考虑处理各种实际问题。例如,如何处理不同光照、遮挡和背景复杂度对检测准确性的影响,以及如何优化算法以进一步降低延迟等。此外,针对特定应用领域,可能还需要进行额外的定制开发工作以提升模型性能。 MoveNet Lightning 模型为实时人体姿势检测提供了一种高效且轻量级的解决方案,通过合理的设计和优化,可以在各种应用场景中实现快速准确的人体姿态识别。这对于推动人体交互技术的发展和应用具有重要意义。
2025-12-30 20:32:56 4KB python
1
在当前信息化和智能化的时代背景下,人工智能技术尤其在智能监控领域有着广泛的应用。人体摔倒姿态检测作为智能监控中的一项重要内容,其重要性随着人口老龄化问题的日益突出而愈发明显。这项技术的应用场景非常广泛,比如在老年人护理、公共安全监控以及医疗健康监护等多个领域中,都有着不可替代的作用。 本数据集以"人体摔倒姿态检测数据集"为标题,主要针对人体摔倒姿态的检测和识别进行数据的整理和分类。数据集中的内容经过精心设计和收集,覆盖了多种摔倒姿态和日常动作,为开发者提供了丰富的素材用于训练和测试摔倒检测模型。 摔倒姿态的检测算法一般基于计算机视觉和机器学习技术,通过分析人体形态和运动轨迹来判断是否发生了摔倒事件。高质量的数据集是开发和训练此类算法的基础。本数据集将为研究人员提供必要的训练数据,有助于提高摔倒检测系统的准确性和可靠性。 数据集的收集通常涉及到复杂的场景,为了尽可能模拟真实环境下的摔倒情况,数据采集工作往往需要在多种环境中进行,包括不同的光照条件、背景和人群密度。收集到的数据将包含视频文件和图像文件,它们经过标注,标注信息包括人体的姿态、动作以及可能的摔倒情况等。 数据集的使用场景也十分广泛,不仅可以用于摔倒检测模型的训练和验证,还可以被应用于人体动作识别、姿态估计以及行为分析等多个领域。由于数据集往往具有较高的实用价值和研究价值,因此也常常成为学术界和工业界合作的媒介,推动相关技术的发展和应用。 对于初学者而言,本数据集可以作为学习计算机视觉和机器学习基础知识的素材,对于专业人士而言,则是进行算法优化和新算法研发的重要工具。随着人工智能技术的不断进步,相信未来人体摔倒姿态检测技术将变得更加精准和智能化,为人类的安全和健康保驾护航。 与此同时,数据集的设计和应用也面临一些挑战,比如数据隐私和伦理问题、数据的多样性和代表性问题等。这些都是在设计和使用数据集过程中需要认真考虑和处理的问题。 本数据集的发布,对于推动摔倒姿态检测技术的研究和应用具有重要的意义,有望在未来改善和提升人们的生活质量,并对智能监控和人工智能技术的发展产生积极的推动作用。
2025-12-26 16:46:38 368.37MB 数据集
1
人体的腹部脂肪含量按深度可以分为皮下脂肪SFA(Subcutaneous Fat Area)和内脏脂肪VFA(Visceral Fat Area),两种脂肪的含量对人体健康具有一定的影响,为了避免测量不同深度的腹部脂肪含量造成的相互干扰。设计了一种基于多频生物电阻抗法BIS(Bioimpedance Spectroscopy)测量人体腹部脂肪的装置,该装置采用四电极多频率的生物电阻抗测量系统,主要包括程控信号发生器模块和幅度相位检测模块。根据选择的最佳的电极相对固定位置及合适的测量方案,可以计算出相应深度
2025-12-04 01:26:49 311KB 工程技术 论文
1
资源下载链接为: https://pan.quark.cn/s/d9ef5828b597 OpenPose关键点识别速查笔记 —————————————— 1 整体思路 把RGB图拆成两个并行的置信图分支: 身体18点 PAFs(Part Affinity Fields) 手/脸/足 高分辨热图 用CNN同时估计,后接贪婪匹配→拼装骨架。 2 网络结构 输入:368×368×3 前段:VGG19前10层→特征F 中段:6级级联 refine,每级含: PCM(关键点热图) + PAF(肢体向量场) 双分支 末段:上采样×4→高分辨率手/脸/足热图(输出尺寸 96×96)。 3 关键点定义 身体18点:0鼻1颈2右肩3右肘…17头顶 手21点:掌心→五指关节 脸70点:轮廓、眉、眼、鼻、嘴 足6点:大/小趾、脚跟 4 PAF 拼装流程 (1) 取PCM中局部极值>阈值得候选点 (2) 对每类肢体(如右前臂) a. 计算两端点对连线 b. 采样10点,累加PAF方向一致性得分 c. 匈牙利算法最大权重匹配→成对 (3) 重复(2)直至全身骨架。 5 训练细节 数据增强:随机旋转±30°、尺度0.5-1.5、半身遮挡 损失:均方误差,难样本权重×3 迭代:1e-4 Adam,前60k步冻结VGG,后40k全调。 6 推断加速 半精度FP16,批处理4帧 先用低分辨率检出人体框,再裁出子图精修手/脸 多线程:CPU后处理,GPU前向。 7 可视化速读 图1:输入图 → 图2:PCM叠加 → 图3:PAF箭头 → 图4:最终骨架 红=高置信,蓝=低置信。 8 误差排查清单 漏检:降低阈值/增尺度 抖动:使用光流平滑 自遮挡:加侧面训练数据。
2025-11-13 10:24:19 250B 姿态估计 PPT资源
1
内容概要:本文详细介绍了利用Comsol多物理场仿真软件进行人体血管壁在血液流动时的变形及应力分布的研究。文章首先阐述了流体动力学和结构力学的基础概念及其在血管系统中的具体表现形式,接着展示了如何在Comsol中构建二维和三维血管模型,设置材料属性、物理场、边界条件、网格划分以及求解器配置的具体步骤。此外,文中还探讨了仿真结果对于理解动脉粥样硬化等疾病机制的意义,并强调了仿真结果与实际实验数据对比验证的重要性。 适合人群:从事生物医学工程、流体力学、结构力学等相关领域的研究人员和技术人员。 使用场景及目标:适用于希望深入了解血管壁在血流冲击下力学行为的研究者,旨在揭示血管壁变形和应力分布规律,为相关疾病的诊断和治疗提供理论支持。 其他说明:文中提供的代码示例和建模技巧可以帮助读者更好地理解和掌握Comsol仿真的具体操作流程。
2025-10-25 23:48:35 1.27MB
1
根据提供的文件信息,我们可以获取到有关“人体安全帽反光衣检测数据集VOC+YOLO格式4064张4类别”的以下知识点: 1. 数据集内容:数据集包含了4064张图片,这些图片均与人体安全帽和反光衣检测相关。每张图片都已经通过精确标注,标注内容符合Pascal VOC格式以及YOLO格式。 2. 标注格式:每个图片对应有两种格式的标注文件,分别是VOC格式的.xml文件和YOLO格式的.txt文件。两种格式文件共同提供了图片中安全帽和反光衣的标注信息。 3. 标注细节:标注细节包括了矩形框的绘制,这些矩形框指明了图片中安全帽和反光衣的具体位置。使用了专门的标注工具labelImg进行标注工作,确保标注的准确性和一致性。 4. 类别与数量:该数据集共包含4个标注类别,分别为:安全帽("hat")、无安全帽("no_hat")、无反光衣("no_vest")、有反光衣("vest")。每个类别的标注框数分别为:7981、3573、6856、4201。总标注框数达到了22611个。 5. 数据集的组织:数据集的图片和标注文件被组织在不同的文件夹中。例如,类别名称对应的标注数量是以文件夹中的"classes.txt"文件为准的。这种组织方式有助于用户快速理解和访问数据集内容。 6. 数据集的应用:该数据集可以被广泛应用于计算机视觉和机器学习领域中,尤其是涉及到对象检测、模式识别和安全监控的场景。它可以帮助训练和优化相关模型,以实现对工作场景中人员安全装备穿戴状态的实时监测和评估。 7. 数据集免责声明:文件明确指出,数据集不对所训练模型或权重文件的精度进行任何保证。这说明数据集提供者不对数据集使用后的效果承担责任,用户在使用数据集时应自行负责模型的验证和评估。 8. 数据集的查看:数据集提供了图片预览功能,允许用户通过预览标注例子来直观了解数据集的标注质量。 该数据集为使用者提供了一套高质量、结构化、多格式标注的人体安全帽和反光衣图像,适合用于进行机器学习和深度学习模型训练,尤其是用于目标检测和图像识别的研究和开发工作。同时,由于数据集已经按照特定的格式进行了细致的标注,因此它也极大地减少了用户在前期数据准备和处理上的工作量。
2025-10-17 10:46:25 2.29MB 数据集
1
标题中的“MATLAB视频人体异常行为检测识别[GUI]”是指使用MATLAB编程语言开发的一个图形用户界面(GUI)应用程序,专门用于人体异常行为的检测和识别。MATLAB是一种广泛应用于科学计算、图像处理和数据分析的高级编程环境,其丰富的库函数和强大的计算能力使其在视觉信号处理领域尤其受欢迎。 描述中提到的“源码都是经过本地编译过可运行的”,意味着下载的压缩包包含了完整的MATLAB代码,用户可以直接在自己的MATLAB环境中运行这些代码,而无需进行额外的编码工作。"按照文档配置好环境"暗示了该资源可能附带了一份指导文档,指导用户如何设置MATLAB环境,包括导入必要的工具箱和库,以确保代码的顺利执行。 “资源项目源码系统完整”表明这个项目是完整的,不仅包含主程序,可能还包括辅助函数、数据处理脚本等,形成了一个全面的解决方案。内容经过“专业老师审定”,意味着代码质量高,逻辑清晰,适合学习和参考。 “计算机毕设”和“管理系统”标签可能表示这个项目适用于计算机科学和技术专业的毕业设计,特别是那些涉及监控系统或智能安全管理系统的学生。而“毕设源码报告”则提示这可能是一个完整的毕业设计项目,不仅有源代码,还可能包括设计报告,详细解释了项目的实施过程和结果。 “编程”标签则强调了此资源的技术性质,即通过编程实现特定功能。 至于“project_code_01”这个子文件名,通常表示这是一个系列的一部分,可能还有其他的代码文件(如project_code_02、project_code_03等),它们可能是不同的模块或者不同阶段的代码。 这个资源包提供了一个基于MATLAB的、具有GUI的人体异常行为检测系统,适用于学习和研究,特别是对于计算机科学与技术专业的学生进行毕业设计或项目实践。用户可以借助提供的源代码和文档,了解和掌握视频处理、行为分析以及GUI编程的相关技术,并根据自己的需求进行修改和扩展。
1
数据集说明:yolo格式,一共196张,后续还会继续增加 train:images,lables格式 1、提供对人员上身短袖的标注 2、提供了对于胳膊的标注 3、可以通过人体,短袖,胳膊共同判断人是否穿着短袖 适合场景 1、工地、工厂判断不可以穿短袖的场景 YOLO目标检测数据集是专门为用于检测人体上身穿着短袖工作服及人体胳膊的图像数据集。该数据集采用YOLO格式,它包含196张图像及对应的标注信息,用于训练机器学习模型。数据集被划分为训练集,其中包含images和labels两个部分。具体而言,这一数据集的特点是对人体上身的短袖衣物进行标注,同时对人的胳膊也进行了标注。这种标注方式使得数据集可以用来训练模型区分人是否穿着短袖工作服,这对于特定场合如工地或工厂等需要符合工作服着装规定的场景尤为重要。 此类数据集可以应用于多种视觉识别任务,尤其是目标检测。YOLO算法以其实时性和准确性受到许多研究人员的青睐,它能够在图像中定位并分类多个对象。数据集中的图像与标注信息,可以帮助训练出一个能够识别短袖工作服和人体胳膊的模型,从而达到判断人是否穿着短袖的目的。 YOLO目标检测数据集还可以通过特定场景来使用,例如,在工地或工厂中,为了避免安全事故的发生,可能需要强制要求工人穿着符合规定的服装。例如,一些工作岗位可能禁止穿着短袖工作服,以防止工人的胳膊暴露在潜在的危险环境中。通过使用这样的数据集,可以开发出能够自动识别并提醒违规着装情况的智能监控系统。 此外,此类数据集不仅仅适用于工作服短袖和胳膊的识别,还可以通过扩展标注来实现更多的功能。例如,可以将数据集用于其他类型的服装识别,甚至扩展到整个人体姿态识别和行为分析。对于穿戴检测技术来说,这样的数据集是一个宝贵的资源,对于研发穿戴检测和人员安全管理系统具有重要意义。 值得注意的是,这一数据集还在持续扩充中,未来的版本将会加入更多的训练图像,这对于提高模型识别准确度和泛化能力是非常有益的。随着数据量的增加,模型将能更准确地识别各种复杂场景下的短袖工作服和胳膊,进一步提升其在实际工作环境中的应用价值。 YOLO目标检测数据集针对特定的应用场景提供了丰富的标注信息,能够帮助开发者训练出针对短袖工作服和人体胳膊的高效检测模型。这对于提高工作场所的安全性、自动化监管具有重要的现实意义。同时,随着数据集的不断更新和扩充,这一工具将在目标检测领域展现出更大的应用潜力。
2025-09-08 08:36:30 185.32MB 数据集 yolov 目标检测
1