资源下载链接为: https://pan.quark.cn/s/d9ef5828b597 OpenPose关键点识别速查笔记 —————————————— 1 整体思路 把RGB图拆成两个并行的置信图分支: 身体18点 PAFs(Part Affinity Fields) 手/脸/足 高分辨热图 用CNN同时估计,后接贪婪匹配→拼装骨架。 2 网络结构 输入:368×368×3 前段:VGG19前10层→特征F 中段:6级级联 refine,每级含: PCM(关键点热图) + PAF(肢体向量场) 双分支 末段:上采样×4→高分辨率手/脸/足热图(输出尺寸 96×96)。 3 关键点定义 身体18点:0鼻1颈2右肩3右肘…17头顶 手21点:掌心→五指关节 脸70点:轮廓、眉、眼、鼻、嘴 足6点:大/小趾、脚跟 4 PAF 拼装流程 (1) 取PCM中局部极值>阈值得候选点 (2) 对每类肢体(如右前臂) a. 计算两端点对连线 b. 采样10点,累加PAF方向一致性得分 c. 匈牙利算法最大权重匹配→成对 (3) 重复(2)直至全身骨架。 5 训练细节 数据增强:随机旋转±30°、尺度0.5-1.5、半身遮挡 损失:均方误差,难样本权重×3 迭代:1e-4 Adam,前60k步冻结VGG,后40k全调。 6 推断加速 半精度FP16,批处理4帧 先用低分辨率检出人体框,再裁出子图精修手/脸 多线程:CPU后处理,GPU前向。 7 可视化速读 图1:输入图 → 图2:PCM叠加 → 图3:PAF箭头 → 图4:最终骨架 红=高置信,蓝=低置信。 8 误差排查清单 漏检:降低阈值/增尺度 抖动:使用光流平滑 自遮挡:加侧面训练数据。
2025-11-13 10:24:19 250B 姿态估计 PPT资源
1
这是人体关键点检测(人体姿态估计)Android Demo App,更多项目请参考: 人体关键点检测1:人体姿势估计数据集(含下载链接) https://blog.csdn.net/guyuealian/article/details/134703548 人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码和数据集 https://blog.csdn.net/guyuealian/article/details/134837816 人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测 https://blog.csdn.net/guyuealian/article/details/134881797 人体关键点检测4:C/C++实现人体关键点检测(人体姿势估计)含源码 可实时检测 https://blog.csdn.net/guyuealian/article/details/134881797
2024-07-02 20:45:17 41.56MB android 人体关键点检测 人体姿态估计
1
Android人体检测和人体关键点检测APP,支持CPU多线程和GPU加速,可实时检测(这是 Demo APP),原文请参考《2D Pose人体关键点实时检测(Python/Android /C++ Demo)》https://panjinquan.blog.csdn.net/article/details/115765863
2024-01-02 17:16:16 106.32MB 人体关键点 人体姿态估计
1
使用mask-rcnn进行人体实例分割和关键点检测的官方模型mask_rcnn_coco.h5,为了提高下载速度,因此在csdn上进行了上传,有需要的可以进行下载
2022-09-23 10:54:32 311.79MB 人体关键点检测 mask-rcnn 实例分割
1
pyqt5+AI健身+mediapipe 可视化界面opencv实现人体关键点检测,AI健身计数等功能。详细:https://blog.csdn.net/qq_34717531/article/details/124670291?spm=1001.2014.3001.5502。使用OpenCV+mediapipe的BlazePose以及前端界面的Qt Designer+Pyqt5实现的一个基于人体姿态识别的AI健身系统,可以实现选择打开图片文件或者是视频文件,具有视频的关闭播放和更换视频播放等功能。视频可以在CPU下实时检测。 注: 1.中间数字为角度。采用的是12,14,16,可自由更改。 2.左上角为fps,左下角为次数统计。 3.关闭视频后再打开视频,检测速度有明显提升,暂没发现是什么原因。
为提升人体姿态估计在移动终端设备上的运行速度与实时性,提出一种改进的人体关键点检测算法。通过将 Mobilenetv2轻量级主干网络与深度可分离卷积模块相结合加速特征提取过程,使用精炼网络进行多尺度人体关键点预测,并利用融合网络整合多个尺度的预测结果得到最终人体关键点检测结果。实验结果表明,与传统CPM算法相比,该算法在网络模型参数量和浮点运算量明显减少的情况下PCKh@05仅下降01个百分点,具有较高的检测精度和较好的实时性。
2022-03-19 09:25:23 7.29MB 网络算法图像处理
1
基于深度学习目标检测和人体关键点检测的不健康坐姿检测(部分代码)
2021-05-10 14:06:08 23.19MB 不健康坐姿 人体关键点 目标检测
Python OpenCV OpenPose,实现人体姿态估计
2021-05-05 20:02:07 14.01MB 人体姿态检测 人工智能 python
1