人体姿态估计 项目链接:https://link.zhihu.com/?target=https%3A//github.com 1)方向:姿势估计 2)应用:姿势估计 3)背景:基于热图的方法已成为姿势估计的主流方法,因为其性能优越。然而,基于热图的方法在使用缩小尺寸的热图时会遭受显著的量化误差,导致性能有限,并对中间监督产生不利影响。以往的基于热图的方法依赖于额外的后处理来减轻量化误差。一些方法通过使用多个昂贵的上采样层来提高特征图的分辨率,从而提高定位精度。 4)方法:为了解决上述问题,作者创造性地将骨干网络视为一个degradation(降质)过程,并将热图预测重新构造为超分辨率任务。首先提出了SR head,通过超分辨率预测高于输入特征图(甚至与输入图像一致)的热图,以有效减少量化误差,并减少对进一步后处理的依赖。此外,提出了SRPose方法,以逐渐在粗糙到精细的方式中从低分辨率热图和退化特征恢复高分辨率热图。为了减少高分辨率热图的训练难度,SRPose使用SR head来监督每个阶段的中间特征。另外,SR head是一个轻量级通用的头部,适用于自上而下和自下而上的方法。 《轻量级超分辨率头在人体姿态估计中的应用》 人体姿态估计是计算机视觉领域中的一个关键任务,它涉及到识别图像或视频中人物的关键关节位置,如肩、肘、膝等。这一技术广泛应用于动作识别、人机交互、体育分析等领域。近年来,基于热图的方法在姿态估计中取得了显著的进步,其原理是通过预测每个关节的二维概率分布热图,然后通过峰值检测确定关节位置。然而,基于热图的方法存在一个问题,即在使用缩小尺寸的热图时,会引入显著的量化误差,这限制了其性能并影响中间监督的效果。 为了解决这个问题,研究人员提出了一种新的方法,将骨干网络视为一个降质过程,将热图预测重新定义为超分辨率任务。这一创新思路体现在“轻量级超分辨率头”(SR head)的设计上。SR head的目标是通过超分辨率技术预测出的热图具有比输入特征图更高的空间分辨率,甚至可以与原始输入图像分辨率一致,从而有效地减少量化误差,降低对后续后处理步骤的依赖。这种方法不仅提高了定位精度,还简化了模型结构。 SRPose是基于SR head提出的一种逐步恢复高分辨率(HR)热图的策略。它采用粗到细的方式,从低分辨率(LR)热图和降质特征出发,逐渐恢复出更精确的人体关节位置。在训练过程中,SR head用于监督每个阶段的中间特征,帮助模型更好地学习和优化,降低了高分辨率热图训练的复杂度。 此外,SR head的设计具有轻量级和通用性,无论是自上而下的方法(从全局图像信息开始预测关节位置)还是自下而上的方法(从局部特征开始逐渐构建全身结构),都能很好地适应。实验结果表明,SRPose在COCO、MPII和Crowd-Pose等标准数据集上超越了现有的基于热图的方法,证明了其在人体姿态估计领域的优越性。 这项工作展示了超分辨率技术在解决基于热图的人体姿态估计方法中量化误差问题上的潜力。通过轻量级的SR head设计和逐步恢复策略,模型能够在保持高效的同时提升姿态估计的准确性。这一研究为未来的人体姿态估计技术发展提供了新的思路和方向,有望在实际应用中实现更准确、更快速的人体姿态识别。
2025-04-27 17:56:11 840KB 人体姿态估计
1
这是人体关键点检测(人体姿态估计)Android Demo App,更多项目请参考: 人体关键点检测1:人体姿势估计数据集(含下载链接) https://blog.csdn.net/guyuealian/article/details/134703548 人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码和数据集 https://blog.csdn.net/guyuealian/article/details/134837816 人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测 https://blog.csdn.net/guyuealian/article/details/134881797 人体关键点检测4:C/C++实现人体关键点检测(人体姿势估计)含源码 可实时检测 https://blog.csdn.net/guyuealian/article/details/134881797
2024-07-02 20:45:17 41.56MB android 人体关键点检测 人体姿态估计
1
Android人体检测和人体关键点检测APP,支持CPU多线程和GPU加速,可实时检测(这是 Demo APP),原文请参考《2D Pose人体关键点实时检测(Python/Android /C++ Demo)》https://panjinquan.blog.csdn.net/article/details/115765863
2024-01-02 17:16:16 106.32MB 人体关键点 人体姿态估计
1
本设计将基于OpenCV,采用“关键点提取并归一化”与“分类器”相结合的方式,实现多人正常和异常姿态识别的设计。关键词 OpenCV 人体姿态估计 多分类 行为识别;主要功能是通过MoveNet对前期用于训练的视频内容进行人体骨骼关键点信息的提取,MoveNet将在每帧上将人体骨骼关键点的x和y坐标提取出来,通过一定的算法进行归一化,并保存数据。首先,通过OpenCV将视频读取,通过OpenCV进行简单的视频预处理,进行BGR转RGB的操作,然后加载MoveNet的关键点模型将人体骨骼关键点信息提取出来,对每帧的x和y的坐标进行归一化,将不同大小的骨骼标准化,按帧存入数据库中,这个过程将按WALK、STAND、FALL、FIGHT这四类动作分别进行提取与处理。主要功能对前期数据库内容进行数据分割,生成4个LSTM模型,对分割好的数据进行导入,并和导入对应标签进行迭代训练,最后生成Loss值最低的模型。主要功能对前期数据库内容进行数据分割,生成4个LSTM模型,对分割好的数据进行导入,并和导入对应标签进行迭代训练,最后生成Loss值最低的模型。
2023-03-14 10:33:01 794.28MB opencv LSTM 人体姿态估计 神经网络
1
人体姿态估计hrnet转onnx后的模型,精确度和转换之前的pytorch模型验证丝毫没有下降。
2023-03-02 16:30:21 108.84MB onnx pytorch hrnet 人体姿态估计
1
原模型为pytorch转后得到的onnx文件hrnet_coco_w32_256x192.onnx,用的coco val数据集做的量化,输入为(1,3,256,192),输出为(1,17,64,48)的关键点热图,后面通过高斯化函数可得到关键点,结果经测试。
2023-03-02 14:45:24 30.66MB 量化 hrnet 人体姿态估计 人体关键点
1
Multi-Stage Pose Network
2023-02-28 12:51:43 129KB Python开发-机器学习
1
内容概要:主要利用开源openpose实现对人体19个部位点的识别 适用人群:人资姿态识别初学者,openpose初学者 使用场景及目标:工厂工人操作规范检测 操作指导效果链接:https://blog.csdn.net/weixin_37864926/article/details/124929651
2022-11-24 20:48:16 49.65MB openpose 人体姿态识别 c# python
1
「PoseNet」是一种视觉模型,它可以通过检测关键身体部位 的位置来估计图像或者视频中的人体姿势。例如,该模型可以估计图像中人的手肘和/ 或膝盖位置。这种姿势估计模型不会鉴别图像中的人是谁,只会找到关键身体部位的 位置。 TensorFlow Lite 分享了一个安卓示例应用程序,该应用程序利用设备的摄像头来实时地检测和显示一个人的关键部位
2022-11-15 20:06:52 823KB 视觉模型 人体姿势 TensorFlow Lite
1
YOLOv7是YOLO家族中第一个包含人体姿态估计模型的。
2022-11-04 16:05:25 12.14MB Yolov7 人体姿态估计