电站锅炉燃烧过程是电力生产中极为重要的一环,其燃烧效率和排放控制对于整个电站的经济性和环保性能起着决定性的作用。电站锅炉排放的氮氧化物(NOx)是一种主要的空气污染物,其含量高低直接关系到电站环保标准的满足与否。因此,如何在保证高效燃烧的同时减少NOx排放,已经成为电站锅炉运行和优化中亟待解决的问题。 传统的燃烧优化方法往往依赖于锅炉多工况燃烧调整试验,这种方法耗时费力,且难以应对煤种变化和设备改造带来的挑战。这就需要建立一种能够准确模拟锅炉燃烧特性的模型,以指导电站锅炉的运行和控制。近年来,随着计算机和人工智能技术的飞速发展,人工神经网络和机器学习方法在电站锅炉燃烧优化领域得到了越来越多的应用。 本文所提出的最小二乘支持向量机(LS-SVM)方法,是一种新型的机器学习算法,它在传统的支持向量机(SVM)基础上进行改进,通过最小化结构风险原则来提高模型的泛化能力。LS-SVM特别适合于解决电站锅炉燃烧优化中所面对的小样本、非线性以及高维数的问题。LS-SVM通过非线性映射将样本数据映射到高维空间,在这个空间中寻找最优的线性决策函数,通过求解线性方程组来获取模型参数。这种方法计算速度较快,训练时间短,适用于电站锅炉燃烧优化这种需要即时反应和高精度预测的场景。 在建立了基于LS-SVM的电站锅炉燃烧特性模型之后,还面临着多目标优化的问题。即在追求锅炉热效率最大化的同时,还需降低NOx排放量。本文采用的多目标粒子群优化算法(MOPSO),是一种基于群体智能的算法,适用于求解电站锅炉燃烧优化的多目标问题。该算法通过模拟鸟群觅食行为,将可能的解决方案(粒子)在解空间中进行迭代搜索,以期找到最优的Pareto前沿,从而实现多个目标的平衡。与传统的单目标优化方法相比,MOPSO算法能够获得多个候选解,且利用了之前计算的数据,大大降低了计算量。 通过上述方法,本文建立了电站锅炉NOx排放与效率的混合模型,并利用MOPSO算法对该模型进行了优化仿真。结果显示,模型具有调节参数少、运算速度快、结果稳定和预测精度高的优点,能够准确预报锅炉在不同工况下的NOx排放和效率。这为电站锅炉的高效低NOx排放运行提供了理论基础和实用工具,有助于电站实现经济效益和环保要求的双重目标。 关键词电站锅炉、氮氧化物、效率、最小二乘支持向量机(LS-SVM)、多目标粒子群优化算法(MOPSO)所涉及的主要知识点包括: 1. 燃烧优化的必要性:电站锅炉的燃烧优化可以提高效率,降低NOx排放,是实现电力工业经济效益和环保要求的重要手段。 2. 电站锅炉特性模拟的挑战:锅炉设备庞大,运行条件复杂,煤种多变,传统的函数模型难以建立。 3. 最小二乘支持向量机(LS-SVM):一种采用结构风险最小化原则,适合非线性、高维数问题的机器学习方法,有快速训练和高预测精度的优势。 4. 多目标粒子群优化算法(MOPSO):一种能够处理多目标优化问题的群体智能算法,有效提高电站锅炉燃烧优化的效率与环保水平。 5. 混合模型与优化仿真:结合LS-SVM建立的电站锅炉燃烧模型,并使用MOPSO算法进行多目标优化,实现高效低NOx排放的目标。 通过这些知识点的深入理解和应用,电站可以更科学地进行锅炉燃烧优化,从而在保证电力供应稳定的同时,显著降低环境影响,满足日益严格的环保法规要求。
2025-09-24 12:33:49 446KB 首发论文
1
图像融合 M3FD 数据集 论文:Dual Adversarial Learning and a Multi-scenario Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection 下载链接:https://github.com/JinyuanLiu-CV/TarDAL 数据集:该数据集仅包含整个数据集中的M3FD_Fusion文件 为方便网络不好的同学,现将此数据集进行上传。
2025-09-24 10:41:17 410.28MB 人工智能 数据集 图像融合
1
物联网知识图谱的研究 一、文档概括 文档围绕物联网知识图谱展开了全面的研究,旨在通过对物联网知识图谱的构建与应用研究,实现物联网数据的有效管理和智能化应用。 二、研究背景与意义 物联网作为新一代信息技术的重要组成部分,其发展速度迅猛,对社会经济产生深远影响。物联网知识图谱能够整合物联网设备间的数据关联性,为物联网应用提供了知识层面的支撑,是实现物联网智能化服务的重要基础。 三、研究内容与方法 本研究内容涵盖物联网知识图谱的构建、管理和应用,采用文献研究、案例分析等方法进行深入探讨。研究方法包括对物联网技术、知识图谱理论进行系统梳理,并结合物联网应用场景,设计出一套切实可行的知识图谱构建与应用方案。 四、物联网基础知识 物联网的定义、特点以及关键技术是物联网知识图谱研究的基础。传感器技术、通信技术、数据处理与存储是支撑物联网运行的三大核心技术。物联网的应用领域广泛,包括智能家居、智能交通、智能医疗等多个方面。 五、知识图谱基础理论 知识图谱的定义与结构为研究的理论基础。知识表示方法分为本体论与语义网两种,它们是实现知识图谱中实体间关系表达的关键。知识抽取与融合是构建知识图谱的重要步骤,包括数据预处理、实体识别、关系抽取等多个环节。 六、物联网知识图谱构建 物联网知识图谱构建流程包括知识源选择与处理、知识图谱设计原则、构建实例分析等步骤。知识源的选择与处理关注数据收集与数据清洗,确保数据的质量。知识图谱设计原则强调一致性、完整性和可扩展性,保证知识图谱的稳定性和发展性。构建实例分析则通过具体案例展示知识图谱构建的过程和结果。 七、知识图谱的应用研究 知识图谱的应用研究主要聚焦于智能推荐系统,包括用户行为分析与内容推荐算法。智能推荐系统通过分析用户行为数据,结合知识图谱中的丰富知识,实现更加准确和个性化的推荐。 八、物联网知识图谱的前景展望 随着物联网技术的不断进步,物联网知识图谱将在数据管理、智能化服务等方面发挥越来越重要的作用。未来的研究将继续优化知识图谱的设计,提升其应用价值,为物联网的深入发展提供支撑。
2025-09-23 22:22:48 93KB 人工智能
1
[Morgan Kaufmann] MATLAB GPU 加速计算 教程 (英文版) [Morgan Kaufmann] Accelerating MATLAB with GPU Computing A Primer with Examples (E-Book)
2025-09-22 16:50:50 23.01MB matlab gpu 人工智能 神经网络
1
在深度学习领域,睡眠分期技术的研究已经成为了热门话题,它主要涉及到使用深度学习模型来分析人体在睡眠过程中的脑电图(electroencephalogram, EEG)信号,以此来划分睡眠的不同阶段。EEG信号是睡眠分期的重要依据,因为它们反映了大脑在不同睡眠阶段的活动状态。深度学习技术,尤其是卷积神经网络(Convolutional Neural Networks, CNN),已经成为分析这种时间序列数据的强大工具。 通过使用深度学习模型,研究人员能够更加准确地对睡眠进行分期,这对于诊断和治疗睡眠障碍具有重要意义。例如,睡眠呼吸暂停症候群、失眠症、以及多种神经系统疾病都可以通过睡眠分期的分析来辅助诊断。深度学习的加入,特别是在特征提取和模式识别方面,极大地提高了睡眠分期的自动化水平,减少了人工标注的主观性误差,提高了分期的准确率。 在给出的文件内容中,涉及到几个关键部分。首先是README.md文件,它通常包含了项目的详细说明,包括项目的背景、目标、使用方法和安装指南等。其次是load-dataset.py文件,这个文件可能负责数据集的加载工作,包含了读取和预处理EEG数据集的代码。预处理的步骤可能包括数据清洗、格式转换、标准化等,这些步骤对于提高后续深度学习模型的训练效果至关重要。cnn-eeg-classification.py文件可能包含了核心的深度学习模型实现,其中CNN模型被用于对经过预处理的EEG数据进行特征学习和分类。 深度学习模型的训练和验证通常需要大量的标记数据,因此数据集的构建和管理是一个重要环节。在本项目中,很可能使用了大量经过专业标注的睡眠EEG数据,这些数据对于训练出一个有效的睡眠分期模型是必不可少的。通过使用深度学习框架,如TensorFlow或PyTorch,研究人员可以构建复杂的神经网络结构,并利用GPU进行高效的训练。 此外,深度学习模型的性能评估也是一个不可忽视的部分,它通常包括准确率、召回率、F1分数以及混淆矩阵等指标的计算。通过这些指标,研究人员可以了解模型在各个睡眠阶段分期中的表现,并据此对模型进行调优。 由于深度学习和人工智能技术的迅速发展,睡眠分期技术也在不断进步。目前,不仅限于传统的CNN模型,各种新型的深度学习模型也被应用于EEG信号分析,例如长短期记忆网络(Long Short-Term Memory, LSTM)、门控循环单元(Gated Recurrent Unit, GRU)和一维卷积网络(1D ConvNet)等。这些模型在捕捉时间序列数据的长期依赖关系方面表现出色,因此可能在未来的睡眠分期研究中发挥更大的作用。
2025-09-22 16:22:43 6KB 毕业设计 课程设计 人工智能 yolo
1
国土空间规划是涉及自然资源和国土空间综合管理的一项重要工作,对促进区域经济社会发展、优化国土空间布局、保护生态环境等具有重要意义。近年来,随着信息技术的飞速发展,特别是地理信息大数据技术的应用,为国土空间规划提供了新的技术手段和工具。本研究以地理信息大数据驱动的国土空间规划智能决策系统为研究对象,旨在构建一个科学高效、决策智能化的规划平台。 研究背景与意义主要体现在以下几个方面:地理信息大数据的出现改变了传统国土空间规划的数据采集和处理方式,提供了更加丰富和精确的信息资源。通过应用大数据技术,可以实现对国土空间多维度、动态化的分析,为规划决策提供更为准确的依据。再次,随着人工智能和机器学习等技术的发展,利用智能算法对大数据进行分析和挖掘,可以提炼出有价值的信息和知识,支撑国土空间规划的智能决策。 研究目标与内容涵盖了对地理信息大数据在国土空间规划中应用的理论与实践研究。目标主要集中在构建一个集成大数据技术、人工智能和智能决策系统的国土空间规划平台,实现在规划编制、实施、监测和评价等环节中的智能化应用。内容包括研究地理信息大数据的特点和价值,探讨智能决策系统的设计与实施路径,以及评估其在实际国土空间规划中的应用效果。 研究方法与技术路线则涉及了系统分析、数据挖掘、模型构建等多个方面。采用的技术包括但不限于地理信息系统(GIS)、大数据存储与处理技术、人工智能算法、以及相关的数据分析技术。研究中将通过实际案例验证所构建智能决策系统的有效性和实用性。 智能决策系统理论部分主要探讨了如何将人工智能与机器学习技术融入国土空间规划决策过程中,以及如何在系统中集成和优化这些技术,以实现智能决策模型的选择、构建、训练、验证和部署。 在国土空间规划智能决策系统架构设计方面,研究明确了系统的总体架构、功能模块设计和系统安全与隐私保护策略。系统总体架构需保证技术的先进性和系统的稳定性;功能模块设计应满足实际规划过程中的多样化需求;系统安全与隐私保护是确保信息处理过程中数据安全的重要环节。 地理信息大数据挖掘与分析部分是研究的核心内容之一。它包括数据预处理、特征提取与模式识别、时空动态分析等关键环节。通过对大数据进行有效处理和分析,可以发现数据中的潜在规律和趋势,为决策提供依据。 智能决策模型构建与应用部分则关注于如何利用所挖掘的数据构建模型,并将模型应用于实际的规划决策过程中。这包括决策模型的选择与构建、模型训练与验证、以及模型部署与在线服务等步骤。 实证研究与案例分析部分通过选取具体的国土空间规划案例,验证了智能决策系统架构设计、数据挖掘与分析、决策模型构建的实际应用效果,以及系统在解决具体规划问题中的表现。 在总结与展望部分,研究回顾了整个研究过程中的成果,分析了当前研究的不足与局限,并对未来的发展趋势和技术进步进行了展望。 在技术应用方面,地理信息大数据可以为国土空间规划提供从宏观到微观的多尺度分析,支持土地利用优化、城乡规划布局、生态环境监测等多方面的规划工作。通过对大数据进行深入分析,可以增强规划方案的科学性和前瞻性,提升国土空间规划的效率和质量。 人工智能与机器学习技术在处理大量、复杂数据时具有显著优势,能够自动提取有用信息,并根据数据驱动的分析结果支持智能决策。这些技术的发展和应用为构建智能化的国土空间规划决策系统提供了可能。 智能决策系统的构建和应用不仅提升了国土空间规划的技术水平,还促进了规划决策的科学化、智能化和精准化。在未来的国土空间规划领域,智能决策系统有望成为推动规划工作发展的重要驱动力。 地理信息大数据驱动的国土空间规划智能决策系统的研究,不仅对我国当前的国土空间规划工作具有重要的指导意义,也为未来相关技术的发展和应用提供了理论基础和实践案例。随着技术的进一步发展和完善,智能决策系统有望在更广阔的范围内得到应用,助力国土空间规划工作更好地服务于经济社会发展和生态环境保护。
2025-09-21 11:31:11 59KB 人工智能 AI
1
智能算法,作为提升汽车NVH性能优化的关键技术,已经逐渐成为研究的热点。NVH指的是汽车的噪声(Noise)、振动(Vibration)以及声振粗糙度(Harshness),是影响汽车乘坐舒适性和产品质量的重要因素。智能算法在这一领域的应用,主要涉及对汽车内部振动和噪声源的识别、预测汽车振动传播路径、抑制不希望的振动以及优化隔声隔振结构设计等多个方面。 在汽车NVH性能优化中,智能算法能够模拟和分析复杂的物理过程,提供更为精确的设计方案,从而在产品开发初期就可降低NVH问题的发生概率。传统NVH优化方法包括经验设计、仿真分析和试验验证,但这些方法存在局限性,如成本高昂、耗时长、难以处理高复杂度问题等。相比之下,智能算法,特别是机器学习和人工智能大模型,以其快速性、高效性和智能化特点,在NVH优化领域展现出巨大潜力。 智能算法在汽车NVH性能优化中的研究进展主要体现在以下几个方面: 1. 智能算法的理论基础和分类,这包括智能算法的基本定义、分类以及其处理NVH问题的优势分析。 2. 传统汽车NVH优化方法的回顾及其局限性,如经验设计方法的回顾、仿真分析的应用、试验验证与参数调整的讨论。 3. 智能算法在汽车振动特性优化中的应用,包括振源识别与定位技术、振动传播路径预测模型、针对性振动抑制策略的生成。 4. 智能算法在汽车噪声特性优化中的应用,如噪声源识别与特性分析、噪声传播建模与仿真、隔声隔振结构的优化设计。 5. 基于智能算法的汽车NVH综合性能优化,这涉及振动与噪声耦合机理的智能建模、多目标NVH性能协同优化方法、整车NVH性能的智能预测与评估。 6. 在智能算法应用于NVH优化中遇到的挑战及未来展望,包括数据质量与算法选择问题、计算效率与实时性要求、多学科交叉融合的需求等。 智能算法在汽车NVH优化中的应用展现出广阔的前景,但同时也面临着多方面的挑战。未来的研究需要深入探索智能算法在NVH优化中的实际应用效果,以及如何克服计算资源和实时性等问题,更好地将智能算法与传统NVH优化方法相融合,从而实现汽车NVH性能的全面提升。
2025-09-18 17:16:18 116KB 人工智能 AI
1
内容概要:本报告由《智能体技术和应用研究报告(2025年)》编制,详细探讨了智能体技术的发展现状、关键技术、产业应用、问题挑战和发展建议。智能体作为大模型的原生应用形态,能够将模型能力转化为任务执行能力,加速行业数字化转型和智能化升级。报告指出,智能体具备科研和应用双重价值,能够推动基础理论创新和跨学科融合,同时显著提升各行业效率。关键技术方面,涵盖模型多维能力、全局规划、工具调用和通信协议,确保智能体在复杂环境中高效运行。产业应用方面,智能体已广泛应用于电信、制造、金融、政务等多个领域,推动降本增效和创新发展。问题挑战部分讨论了认知规划能力不足、应用场景创新不足、安全伦理等问题。发展建议部分提出加强大模型攻关、促进多领域落地应用、引导智能体对齐人类价值偏好,以实现智能体技术的可持续发展。 适合人群:具备一定技术背景的研究人员、工程师和企业决策者,特别是关注人工智能和智能体技术发展的专业人士。 使用场景及目标:①了解智能体技术的发展趋势和关键技术;②掌握智能体在各行业的应用案例和实践经验;③识别智能体技术面临的挑战和应对策略;④探索智能体技术的未来发展方向和政策建议。 阅读建议:本报告内容详尽,涵盖智能体技术的多个方面,建议读者根据自身需求选择性阅读。对于希望深入了解智能体技术的读者,建议重点阅读关键技术和发展建议部分;对于关注行业应用的读者,建议重点阅读产业应用部分。
2025-09-18 14:42:56 1.6MB 人工智能
1
随着人工智能技术的不断发展和应用,全球对AI的依赖和投资持续增长。2025年的研究显示,AI技术的应用已进入到一个关键时刻,各个行业都开始加快采用和探索AI的可能性。当前,大模型的使用成本正在快速降低,这使得AI应用的范围不断扩大,使用量持续上升。在此基础上,大型科技公司正不断增加资本投入,推动AI技术的发展,并通过AI应用获得显著的收入。 未来,AI应用的发展趋势被分为四个象限,反映了AI技术的不同发展阶段和应用方向。其中,通用/集中型的大模型正在实现全场景应用,而专用/端侧的AI应用则充当了AI应用的主要支撑。此外,通用/端侧的大模型和专用/集中的AI Agent,都预示着未来AI应用在跨领域和智能化管理方面的新进展。 在AI与具体行业的融合方面,中美两国的AI产业发展逻辑存在差异。美国企业往往占据全球知识产权金字塔的顶端,通过AI技术在全球范围内获取利益。相比之下,中国则在下游应用方面具有核心优势,这也是中国AI产业发展的关键突破口。在这样的背景下,中国提出了基于通用大模型和垂直大模型相结合的AI+战略,旨在利用AI技术对传统行业进行赋能,实现双向促进。 AI+战略的核心在于通过通用大模型和垂直大模型的应用,推动传统行业的转型升级。通用大模型作为基础,能够保证AI技术在各个领域的普及和应用;而垂直大模型则作为架构支撑,针对特定行业进行深度定制和优化。AI+不仅能够促进传统行业的创新和发展,同时也能够提升AI技术的实际应用价值和效率。 展望未来,AI技术将继续深入到各个行业中,与行业内的具体需求和特点相结合,形成差异化的应用模式。同时,随着AI技术的不断成熟和市场的认可,其在各行各业中的重要性将愈发凸显,成为推动社会进步和经济发展的关键力量。
2025-09-18 14:40:49 16.94MB 行业报告
1
人工智能的发展历程可以追溯到古埃及时期,但是它作为一个科学概念被正式提出则是在1956年的达特茅斯会议上。自那时起,人工智能领域经历了多次理论和技术的更新迭代。人工智能(AI)作为计算机科学的一个分支,旨在开发能够模拟、延伸和扩展人类智能的技术。人工智能研究的范围广泛,包括机器人技术、语言识别、图像识别、自然语言处理和专家系统等。它的目标是创造一种机器,能够以类似人类的方式做出反应,甚至在某些方面超越人类智能。 人工智能的概念随着时间推移不断扩展,已经渗透到社会生活的各个方面。从最初的理论提出到现在,人工智能技术已经取得了长足的进步。虽然早期的发展速度并没有预想的那么快,但人工智能已经产生了许多程序,并且这些程序影响到了其他技术的发展。它的未来发展方向将更加侧重于模拟人类智慧,使科技产品成为人类智慧的“容器”。 人工智能的应用领域广泛,包括但不限于自然语言处理、图像处理和数据挖掘。例如,自然语言处理允许计算机理解并响应人类语言,图像处理则涉及从视觉数据中提取信息,而数据挖掘则用于从大量数据中发现潜在的有用信息。随着技术的发展,人工智能的应用将会进一步扩展,应用到更多行业和场景。 人工智能的发展阶段可以大致分为三个阶段:计算智能、感知智能和认知智能。在计算智能阶段,智能产品能够快速进行计算和存储,其核心是算法的设计,这些算法以自然界的规律为灵感,例如物理学、化学、数学和生物学等学科的现象和规律。感知智能阶段则强调智能机器人能够感知外部世界的状态和变化,并理解这些变化的内在含义。这一阶段的智能产品特点体现在语音识别、手写识别、图像识别等方面。认知智能阶段则是人工智能发展的高级阶段,其中机器人能够通过自主学习对信息进行编码、储存和提取,进而实现自我完善。认知智能阶段的智能产品拥有自主学习的能力,并能在无需重新编程的情况下通过学习获得高级认知能力。 人工智能是一个不断进步的领域,其发展速度和方向受到多种因素的影响。随着技术的不断成熟,人工智能的应用领域和影响范围也在不断扩大,已经成为当代科技发展的一个重要趋势。未来,人工智能有望在更多领域发挥关键作用,成为提升人类智慧和生产力的重要工具。
2025-09-18 13:09:17 6.69MB
1