该项目是一个基于PyQT和FaceNet卷积神经网络的学生人脸识别考勤系统,旨在提供一个实用的教育管理工具。PyQT是一个强大的Python图形用户界面库,它允许开发者创建出美观且功能丰富的应用程序。FaceNet则是一种深度学习模型,专门用于人脸识别,其核心是构建一个将人脸图像映射到欧氏空间中,使得同一人的不同面部图像距离接近,不同人的面部图像距离远的系统。 1. **PyQT框架**: PyQT是Qt库的一个Python绑定,提供了丰富的组件和API,用于创建桌面应用程序。在本项目中,PyQT用于设计和实现用户界面,包括登录界面、考勤记录显示、设置界面等。开发者可以利用PyQT的信号与槽机制来处理用户交互事件,如按钮点击、文本输入等。 2. **FaceNet模型**: FaceNet是基于深度学习的模型,通过训练大量的人脸图像数据,学习到人脸特征表示。在考勤系统中,FaceNet的主要作用是对输入的面部图像进行预处理、特征提取和比对。预处理可能包括灰度转换、尺寸标准化等;特征提取则是通过模型的前向传播过程,将人脸图像映射为高维特征向量;比对则是计算两个特征向量的欧氏距离,判断是否属于同一个人。 3. **卷积神经网络(CNN)**: 在FaceNet中,卷积神经网络是核心组成部分。CNN能自动从图像中学习和抽取特征,特别适合处理图像数据。在人脸识别中,多层卷积层、池化层和全连接层的组合可以捕获面部的局部和全局特征,从而实现精确的识别。 4. **环境配置**: 使用本项目前,需要安装Python编程环境,以及PyQT和FaceNet的相关依赖库,如TensorFlow、OpenCV、Numpy等。这些库可以通过pip命令进行安装,同时,确保计算机上已安装合适的CUDA和CuDNN版本以支持GPU加速。 5. **课程设计与毕设项目**: 这个系统适用于计算机科学及相关专业的课程设计或毕业设计,因为它涵盖了深度学习、GUI开发等多个领域,能够帮助学生实践理论知识,提升综合能力。此外,系统的实际应用场景使其具有较高的实用性价值。 6. **系统流程**: 系统通常包括以下步骤: - 用户登录:验证身份。 - 面部捕捉:通过摄像头实时捕获人脸。 - 人脸识别:使用FaceNet模型进行识别。 - 考勤记录:保存识别结果,生成考勤报表。 - 数据管理:存储和查询学生的考勤记录。 通过这个项目,学习者不仅可以掌握PyQT界面开发,还能深入了解FaceNet和CNN在人脸识别中的应用,同时锻炼解决问题和项目实施的能力。对于想要提升自己在深度学习和GUI开发方面技能的人来说,这是一个非常有价值的实践项目。
1
之前发布的文章《从头开始开发基于虹软SDK的人脸识别考勤系统(python+RTSP开源)》的完整源码,有需要的可以下载自己研究了。 其中的SDK是今年2月27日下载的,需要你自己替换成你自己下载的日期的即可,SDKKEY啥的你自己复制进去就好了,python3.9+环境开发测试都通过,没有啥问题。想改考勤啥的自己对照代码修改就好了,别忘了一同修改数据表结构以及相关的inset和update。 分类不知道选啥就放到后端的PYTHON了哈。 虹软人脸识别考勤系统的开发主要涉及Python编程语言,并利用了RTSP协议进行实时视频流的传输,以实现对视频流中人脸的实时检测与识别。开发者首先发布了一篇关于如何从零开始开发这样一个系统的教程文章,随后提供了该系统的完整源码以供他人下载学习和使用。 系统的开发是在Python3.9的环境下进行,并通过了相应的开发测试,证明系统功能正常运行,没有明显的错误。值得注意的是,系统的SDK(软件开发工具包)是特定版本的,用户需要下载最新版本的SDK,并自行将下载日期替换到源码中。此外,SDKKEY(SDK密钥)也需要用户自行配置在源码中。 系统功能的实现依赖于虹软提供的API接口,通过这些接口开发者能够对人脸进行识别处理。在实现考勤系统时,可能还会涉及到对人脸数据的存储,包括但不限于将人脸特征数据存储在后端数据库中,并在人脸匹配成功后执行考勤记录的插入或更新操作。 系统的源码文件命名为FacialAttendanceSystem_py,这表明它是一个专注于后端开发的Python项目。开发者在源码中可能会包含关键的模块和功能实现,比如视频流的捕获、人脸检测与识别、数据库操作等。开发者还提供了提示,如果用户想要修改考勤功能,如变更考勤规则、考勤时间等,需要对照源码进行相应的修改,并且对数据表结构以及相关的插入和更新操作进行同步更改。 虹软人脸识别考勤系统是一个完整的后端Python解决方案,涵盖了从人脸检测、识别到考勤记录管理的全过程。该系统不仅为用户提供了源码,还强调了在使用时需要注意SDK更新以及相关配置的自主设置,以保证系统的正常运行和后续的维护更新。开发者通过开源的方式,不仅降低了学习和应用先进技术的门槛,也为社区贡献了具有实用价值的资源。
2025-04-19 22:29:48 33.78MB python 人脸识别 源码
1
仿真MATLAB人脸识别考勤系统(摄像头,考勤率,GUI,万字文稿)
2023-04-20 22:13:57 745KB matlab 考勤系统 人脸识别
1
基于python opencv人脸识别的员工考勤系统 附完整代码 论文 毕业设计 选题“员工刷脸考勤”,要求采用 python 语言开发,可以通过摄像头添加员工面部信息,这里就涉及到两个具体的个问题,一个是应该以什么样的数据来标识每一个员工的面部信息,二是持久化地保存这些信息到数据库中去。更细地,还涉及表的设计;另一个基本要求是通过摄像头识别员工面部信息来完成考勤,这个问题基本可以通过遍历数据库里的员工面部数据与当前摄像头里的员工面部数据的比对来实现,但有一个问题就是假如摄像头里有多张人脸改怎么处理。扩展要求是导出每日的考勤表,可以拆分为两个部分,一个是存储考勤信息,一个是展示考勤信息。 我们希望达到的目标是: 仿照通用型软件界面设计的原则,所有的操作都在菜单栏里实现,一部分区域用于展示摄像头实时读取并由程序加工后的视频流信息,另一部分区域做控制台输出,打印相关信息,比如提示员工面部信息添加成功、添加失败及其原因,提示员工打卡成功、打卡失败及其原因;添加面部信息时人是必须和程序进行交互的,比如输入一些相关的信息,这个时候程序是阻塞的;但是在打卡的时候,程序是不阻塞的,如果不点击关闭
2023-04-17 22:24:29 198.5MB opencv 人脸识别 考勤系统 毕业设计
基于Matlab语言的人脸识别考勤系统(可摄像头,记录打卡信息,GUI界面)(项目案例、架构)
2023-04-14 17:29:44 487KB matlab 人脸考勤系统 摄像头
1
人脸识别考勤系统可能由于用户化妆等原因发生错误。基于树莓派的在线人脸识别考勤系统使用OpenCV集成的LBPH算法,当发生识别错误时,管理员可以远程登录系统对用户采集新的样本以更新其人脸模型。对系统进行测试,发现其能够稳定运行;测试模型,发现模型更新后对已知人脸与未知人脸识别评分之差为更新前的4.63倍,即识别的正确率高于更新前的正确率。可以认为系统通过更新模型能够减少由于特征变化引起的识别错误。
1
Python与Face++实现简易人脸识别考勤系统的源码,代码完整,可运行 运行环境:Python版本:IDLE (Python 3.9 64-bit) 代码编译器:Visual Studio Code
2023-02-21 14:47:34 6KB Python Face++ 人脸识别 考勤
1
基于Python的人脸识别课堂考勤系统(毕设)资料包,包内包含项目: 1.系统源码 2.GUI文件 3.数据库表文件 4.转换的GUI.py脚本文件 。。。。。。。。
2022-12-19 19:18:55 25.63MB python 人脸识别 考勤系统 毕业设计
1
python本科毕业设计基于深度学习的人脸识别考勤系统。具备基础的人脸录入,人脸识别,考勤管理,课堂管理,班级管理,日志管理等功能。此Python项目是整体项目的人脸识别部分,基于深度学习的FaceNet算法,对人脸特征进行提取,判断是否输入。python本科毕业设计基于深度学习的人脸识别考勤系统。具备基础的人脸录入,人脸识别,考勤管理,课堂管理,班级管理,日志管理等功能。此Python项目是整体项目的人脸识别部分,基于深度学习的FaceNet算法,对人脸特征进行提取,判断是否输入。python本科毕业设计基于深度学习的人脸识别考勤系统。具备基础的人脸录入,人脸识别,考勤管理,课堂管理,班级管理,日志管理等功能。此Python项目是整体项目的人脸识别部分,基于深度学习的FaceNet算法,对人脸特征进行提取,判断是否输入。python本科毕业设计基于深度学习的人脸识别考勤系统。具备基础的人脸录入,人脸识别,考勤管理,课堂管理,班级管理,日志管理等功能。此Python项目是整体项目的人脸识别部分,基于深度学习的FaceNet算法,对人脸特征进行提取,判断是否输入。
Haar分类器结合keras-facenet算法实现人脸检测分割及人脸识别考勤系统完整源码+项目说明.zip 【模式识别-人脸识别考勤系统】 利用Haar分类器完成人脸检测、分割;利用FaceNet网络完成人脸识别。 【依赖库】 opencv-python numpy keras-facenet(见 https://pypi.org/project/keras-facenet/ ) Keras TensorFlow 其中,keras-facenet需要下载预训练模型置于~/.keras-facenet目录下,如果你获得的版本在model/目录下没有带该模型,请自行到该库的GitHub仓库页下载,或在第一次调用该库时也会自动下载。 【使用face_manager.py可以进行人脸的录入,注意录入姓名时,之间不要用空格分隔】 【使用main.py可以进行人脸考勤主操作】 准确率达到93.2% 【备注】主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。