1.小波图像分解重构代码matlab 2.nlm算法图像去噪Matlab代码 3.中值滤波图像去噪Matlab代码 4.DNCNN图像去噪Matlab代码 5.BM3D图像去噪Matlab代码 6.均值滤波图像去噪Matlab代码 图像去噪是计算机视觉和图像处理领域中的一个重要研究方向,它旨在从受噪声污染的图像中去除噪声,恢复出清晰的图像信息。在这一领域中,多种算法被开发出来,以应对不同类型和不同强度的噪声干扰。本次分析的文件内容涉及了几种在图像去噪中常用的技术,包括小波变换分解重构、NLM算法、中值滤波、DNCNN以及BM3D。 小波变换是一种信号处理技术,它在图像处理中的应用主要表现为多分辨率分析,可以有效地分析图像中的局部特征,而不会丢失重要信息。小波图像分解重构代码通过小波变换将图像分解到不同尺度,然后进行重构,达到去噪的目的。这种方法对于处理非平稳信号非常有效。 非局部均值(NLM)算法是一种基于图像局部相似性的滤波技术,它认为图像中存在大量的重复模式,并利用这些模式对噪声进行过滤。NLM算法在处理高斯噪声方面表现优异,能够很好地保留图像的边缘信息。 中值滤波是一种典型的非线性滤波器,它通过取图像邻域像素值的中值来替代中心像素,以此来去除孤立的噪声点。中值滤波尤其适用于去除椒盐噪声,同时保持图像的边缘信息。 深度神经网络(DNN)在图像去噪方面也取得了显著的进展。DNCNN(Denoising Convolutional Neural Network)是一种特定设计的深度卷积网络,它通过学习大量噪声图像和其对应的干净图像之间的映射关系,从而达到去除噪声的目的。DNCNN算法在去噪性能和效率上都有很好的表现。 BM3D(Block-Matching and 3D Filtering)是一种基于稀疏表示的高级图像去噪算法。它利用图像块之间的相似性来构建一个三维组,然后对这个组进行变换域的滤波处理。BM3D算法能够处理各种类型的噪声,并且在去噪的同时很好地保持图像细节。 图像去噪技术的发展反映了对图像质量要求的提高,以及对处理速度快、效果好的去噪算法的不断追求。各种算法之间的对比和优化,促进了算法的发展和图像处理技术的进步。 图像去噪的研究不仅对学术界具有重要意义,它也广泛应用于工业、医疗、交通等众多领域。在实际应用中,选择合适的去噪算法对于最终的图像分析和处理结果至关重要。同时,随着深度学习技术的发展,基于深度学习的去噪算法在实际应用中越来越显示出其优越性。 图像去噪技术的优化和创新对于提升计算机视觉和图像处理的质量标准有着不可忽视的作用。不同算法的选择和应用,需要根据实际的噪声类型、图像特性以及处理速度等因素进行综合考量。未来,随着技术的不断进步,我们可以期待图像去噪技术能够实现更加智能化和高效化的处理。
2025-10-21 16:54:15 2.86MB
1
二摘代码MATLAB 使用浅层学习提取天际线 下面列出了我们的论文的完整实现,该代码的两个主要组件取决于Python和Matlab。 , 作者:,,和 要求 代码的浅层学习部分取决于Python和OpenCV。 它已经在虚拟环境中使用Python 3.6.10和OpenCV 4.3.0进行了测试。 而代码的动态编程部分取决于Matlab,并已使用Matlab 2016进行了测试。 数据集 我们已经基于玄武岩,Web和CH1这三个数据集学习了滤波器组,并且还在GeoPose3K数据集上进行了测试。 前三个数据集可以从主目录下载并放置在主目录中。 原始CH1数据集可从authors'获得。 此代码提供的版本仅是为了方便起见,请查阅原始版权和CH1数据集的使用条款。 此外,请从相应的下载GeoPose3K。 GeoPose3K数据集应放置在数据目录中。 供参考,这是我们的目录结构。 data ├── Basalt │ ├── ground_truth │ ├── images ├── CH1 │ ├── cvg │ │ ├── ground_truth │ │ ├── images │ ├─
2025-08-26 10:23:20 86KB 系统开源
1
crc编码代码matlab PolarCode-3GPP-MEX 这段代码是用C编程语言实现的,然后将其转换为由matlab脚本调用的mex函数。 Polar编码器和Polad解码器功能遵循3GPP最新TSG版本“ 3GPP TS 38.212 V15.3.0(2018-09),复用和信道编码(版本15)”的标准 版权:国防科技大学潘志鹏 极性编码器功能: 码字= polar_encoder(a,A,E,CRC_size); ->二进制信息位,行向量; A->二进制信息位的长度,标量数; E->二进制码字比特的长度,标量数; CRC_size-> 价值 crc_polynomial_pattern 0 无CRC 6 D ^ 6 + D ^ 5 +1 11 D ^ 11 + D ^ 10 + D ^ 9 + D ^ 5 +1 16 D ^ 16 + D ^ 12 + D ^ 5 +1 24 D ^ 24 + D ^ 23 + D ^ 21 + D ^ 20 + D ^ 17 + D ^ 15 + D ^ 13 + D ^ 12 〜 + D ^ 8 + D ^ 4 + D ^ 2 + D
2025-08-22 15:17:54 33KB 系统开源
1
MATLAB智能算法应用研究报告:无代码word版,详实案例与算法分析的完美结合,MATLAB智能算法案例详解:研究内容、方法与成果展示(无代码),MATLAB智能算法,相关案例 只有word,没有具体代码,代码截图均直接插入到word中,有详细案例说明,包括案例研究内容+智能算法+研究结果说明 只有word,没有代码哦 仅供参考 ,MATLAB智能算法; 案例研究; 案例说明; 研究结果说明,MATLAB智能算法案例研究:无代码的详细案例解析 在当前人工智能技术迅猛发展的背景下,MATLAB智能算法的应用成为了学术研究与工业实践中的热门话题。本研究报告以无代码的word版形式,对MATLAB智能算法进行了详细的案例解析和算法分析,旨在展现智能算法的实际应用效果和研究价值。报告中不仅介绍了智能算法的基本概念和研究方法,还通过详实的案例研究,揭示了智能算法在各种场景下的应用过程和实现结果。 具体而言,研究内容包括了智能算法的理论基础、算法设计和优化过程,以及如何将这些算法应用于实际问题的解决中。案例说明则涵盖了从算法选择、数据预处理、模型训练到结果评估的完整流程。研究结果说明部分则通过对比分析,展示了智能算法相较于传统方法在效率和准确性上的优势。 报告中的智能算法案例分析,不仅对算法本身的性能进行了评估,还探讨了算法在不同领域的应用前景。例如,在计算机科学领域,智能算法可以应用于大数据分析、模式识别、自然语言处理等多个方面。在数据分析领域,智能算法能够帮助研究者从大量复杂的数据中提取有用信息,进行精准预测和决策支持。此外,报告还指出了智能算法在实际应用中可能遇到的挑战和问题,如算法的泛化能力、解释性问题以及在特定领域内的适应性。 为了更好地理解和应用MATLAB智能算法,报告中还特别强调了案例分析的重要性。通过具体的案例研究,读者可以直观地看到智能算法是如何操作和解决问题的,以及如何通过算法调整来应对不同的数据特性和问题类型。这些案例分析不仅有助于加深对智能算法的理解,也能够启发读者在面对新的问题时,如何有效地选择和应用智能算法。 本研究报告提供了一个全面而深入的视角,通过无代码的word版形式,将MATLAB智能算法的理论知识与实际案例相结合,使读者能够在不涉及复杂编程的前提下,获得对智能算法应用的深刻认识。通过这些案例分析,可以预见,MATLAB智能算法将在未来的研究和实践中扮演更加重要的角色。
2025-06-21 13:51:06 1.9MB xhtml
1
局部二值模式(Local Binary Pattern, LBP)是一种在图像处理和计算机视觉领域广泛应用的特征描述符。它简单且计算效率高,常用于纹理分类、人脸识别、行为识别等多个任务。LBP方法通过比较像素点及其邻域像素的灰度差异,生成一种表示邻域结构的编码,以此来捕获图像的局部特性。 LBP操作的基本步骤如下: 1. **中心像素与邻域像素比较**:选择一个像素为中心像素,检查其周围的邻域像素。通常采用8邻域或4邻域,即以该像素为中心的一圈像素。 2. **灰度比较**:将中心像素的灰度值与每个邻域像素的灰度值进行比较。如果邻域像素的灰度值小于中心像素,则对应的位被设置为0;反之,设置为1。 3. **生成二进制字符串**:根据上述比较结果,形成一个二进制字符串,该字符串描述了邻域像素相对于中心像素的灰度关系。 4. **转换为旋转不变的LBP码**:为了使LBP特征不受图像旋转影响,可以使用一个固定顺序的邻域像素进行比较,例如顺时针或逆时针。这样生成的LBP码是旋转不变的。 5. **统计分析**:LBP码可以进一步用于统计分析,如计算直方图,这有助于区分不同图像或图像的不同区域。 在MATLAB中实现LBP,通常会涉及到以下函数和概念: - **imread**:读取图像文件,确保设置好正确的图像路径。 - **im2double**:将图像数据转换为双精度浮点型,便于后续计算。 - **neighborhood**:定义邻域操作,如使用`fspecial('disk', radius)`创建一个圆形邻域。 - **im2col**:将图像数据展开成列向量,方便对邻域进行操作。 - **compare**:比较中心像素和邻域像素的灰度值,生成二进制矩阵。 - **bitwisexor** 或 **bsxfun(@eq)**:进行位运算,生成二进制字符串。 - **reshape**:将二进制矩阵恢复为原始图像尺寸。 - **uint8**:将二进制矩阵转换为无符号整数类型,得到LBP码图像。 在提供的压缩包文件中,"LBP"可能是一个MATLAB脚本或函数,用于执行上述步骤并计算LBP特征。运行这个文件之前,确保设置好工作路径,确保图像文件位于MATLAB可以访问的位置,并且图像格式正确。此外,如果脚本需要特定的参数,如邻域大小、旋转不变性等,也需要按照脚本说明进行设置。 LBP是一种强大的特征提取工具,它在许多图像处理任务中都表现出色。MATLAB作为强大的科学计算环境,提供了丰富的函数库支持LBP的实现。通过理解和应用LBP,我们可以有效地分析和理解图像数据,为各种计算机视觉问题提供解决方案。
2025-05-28 10:24:02 326KB LBP 特征提取
1
标题中提到了“RRT路径规划算法代码(MATLAB版本)”,说明这是一个关于RRT算法的MATLAB实现版本。RRT,即Rapidly-exploring Random Tree,是一种基于随机采样和树结构的路径规划算法,它广泛应用于机器人学、自动驾驶、工业自动化等领域,用于解决复杂环境下的路径规划问题。该算法的特点在于能够快速地搜索到一条从起点到终点的可行路径,尤其适用于高维空间和动态环境中的路径规划。RRT算法适合解决那些传统路径规划算法难以应对的非线性、非凸空间问题。 描述中强调了代码中包含了算法的注释,并采用了模块化编程方式,这对初学者非常友好,能够帮助他们快速理解和入门RRT算法。这表明该代码不仅具有实用性,同时也具有教学意义,能够成为学习RRT算法的优秀资源。 标签为“rtdbs”,这可能是指“Rapidly-exploring Random Tree with Bidirectional Search”,即双向快速扩展随机树算法。这是一种对RRT算法的改进方法,通过从起点和终点同时进行树扩展,可以进一步提高路径规划的效率和质量,尤其是在路径搜索的空间较大时效果更加明显。 文件列表中包含的多个.doc、.html和.txt文件,暗示了这个压缩包不仅包含了RRT算法的MATLAB代码,还可能包含了路径规划算法的理论讲解、代码解析、操作指南、实践案例等内容。这些内容对于初学者来说非常宝贵,能够帮助他们建立起路径规划算法的完整知识体系。其中的“在众多.doc、是一种基于树结构的路径规划算法它能够快速地搜索并生.doc、路径规划算法代码解析随着计算.html、路径规划算法代码版本技.html、探索路径规划算法从基础到实践在数字化时代路径规.html、路径规划算法代码.html”等文件名,显示了文件内容的多样性和丰富性,覆盖了从理论到实践、从入门到进阶的多个层面。而“1.jpg”可能是一张示意图或者算法的流程图,有助于可视化理解算法过程。“基于路径规划算法的代码实现及注释一.txt、当然可以下面是一篇关于随机扩展道路树路径规划.txt、路径规划算法代码版本一引言随着现代计.txt”这些文本文件可能包含了详细的算法实现说明和相关背景介绍。 这个压缩包是一个宝贵的资源,它不仅提供了RRT路径规划算法的MATLAB实现代码,还包含了详尽的理论讲解和实践指导,适合各个层次的学习者,尤其是对于初学者来说,能够帮助他们快速入门并深入理解RRT算法及其在路径规划中的应用。
2025-04-20 13:36:31 294KB
1
标题中的“优化分数阶PD滑模控制器:灰狼优化器优化的分数阶PD滑模控制器,第二个代码-matlab开发”表明我们正在讨论一个利用MATLAB编程环境开发的控制系统设计,具体是基于灰狼优化器(Grey Wolf Optimizer, GWO)的分数阶PD滑模控制器。这个控制器设计是针对系统优化和控制性能提升的一个实例。 我们要理解分数阶微分方程在控制系统中的应用。与传统的整数阶微分方程相比,分数阶微分方程能更精确地描述系统的动态行为,因为它考虑了系统记忆和瞬时效应的混合。分数阶PD控制器(Fractional-Order Proportional Derivative, FOPD)结合了比例(P)和导数(D)的分数阶特性,可以提供更精细的控制响应,如改善超调、减小振荡等。 接下来,滑模控制(Sliding Mode Control, SMC)是一种非线性控制策略,它通过设计一个滑动表面,使系统状态在有限时间内滑向该表面并保持在上面,从而实现对系统扰动的鲁棒控制。分数阶滑模控制器则将滑模控制理论与分数阶微分方程结合,增强了控制的稳定性和抗干扰能力。 灰狼优化器(GWO)是一种基于群智能算法的全局优化方法,模拟了灰狼狩猎过程中的领导、搜索和合作策略。在本案例中,GWO被用于优化分数阶PD控制器的参数,寻找最佳的控制器设置,以最大化控制性能,比如最小化误差、改善响应速度和抑制系统振荡。 在MATLAB中实现这样的控制器设计,通常包括以下步骤: 1. **模型建立**:需要建立系统模型,这可能是一个连续时间或离散时间的分数阶动态系统。 2. **控制器设计**:设计分数阶PD控制器结构,并确定其参数。 3. **优化算法**:利用GWO或其他优化算法调整控制器参数,以达到预定的控制性能指标。 4. **仿真与分析**:在MATLAB环境下进行系统仿真,观察控制器对系统性能的影响,如上升时间、超调、稳态误差等。 5. **结果评估**:根据仿真结果评估控制器性能,可能需要迭代优化过程以找到最优解。 压缩包中的“upload.zip”文件可能包含了MATLAB源代码、控制器设计的详细说明、系统模型数据以及仿真实验的结果。通过解压并研究这些文件,我们可以深入理解如何应用GWO优化分数阶PD滑模控制器的具体实现细节和优化过程。 这个项目展示了如何结合现代优化算法(GWO)和先进的控制理论(分数阶滑模控制)来改善系统的控制性能,对于理解和应用这类技术在实际工程问题中具有重要的参考价值。
2025-04-08 18:35:16 5KB matlab
1
输出调节是控制系统中的一种目标,它旨在通过调整系统的参数或输入来使系统的输出达到期望值或指定的目标。在控制系统中,输出通常是指系统的反馈信号或所关注的变量。输出调节问题涉及到调整系统的操作或控制策略,以便使输出变量尽可能地接近所需的目标值。 输出调节可以应用于各种系统和领域,例如工业过程控制、机械控制、电力系统、自动化系统等。在这些领域中,输出调节可以用于控制温度、压力、速度、位置等各种物理变量。 在输出调节问题中,通常会使用反馈控制方法来实现目标输出的精确调节。这涉及到测量实际输出值,并与期望输出进行比较,然后根据比较结果来调整系统参数或输入,以使输出误差最小化。 输出调节问题的解决方法可以基于经典控制理论,如比例-积分-微分(PID)控制器,也可以使用先进的控制技术,如模型预测控制(MPC)或自适应控制算法。选择适当的调节方法取决于系统的特性、要求和应用环境。 总之,输出调节是控制系统中的一个关键问题,它涉及通过调整系统参数或输入来实现期望输出的精确控制,以满足特定的需求和目标。
2024-09-04 13:08:44 39KB matlab
1
给出了二维FFT的详细仿真,雷达测速测距的注解
2024-08-21 16:47:42 4KB matlab
1
模拟退火算法优化代码MATLAB代码
2024-07-01 14:35:15 1KB matlab 模拟退火算法
1