传统A*算法与创新版对比:融合DWA规避障碍物的仿真研究及全局与局部路径规划,1.传统A*算法与改进A*算法性能对比?改进A*算法融合DWA算法规避未知障碍物仿真。 算法经过创新改进,两套代码就是一篇lunwen完整的实验逻辑,可以拿来直接使用 改进A*算法做全局路径规划,融合动态窗口算法DWA做局部路径规划既可规避动态障碍物,又可与障碍物保持一定距离。 可根据自己的想法任意设置起点与终点,未知动态障碍物与未知静态障碍物。 地图可更改,可自行设置多种尺寸地图进行对比,包含单个算法的仿真结果及角速度线速度姿态位角的变化曲线,仿真图片丰富 绝对的高质量。 ,关键词:A*算法; 改进A*算法; 算法性能对比; 融合DWA; 局部路径规划; 全局路径规划; 障碍物规避; 地图设置; 仿真结果; 姿态位角变化曲线。,"改进A*算法与DWA融合:全局路径规划与动态障碍物规避仿真研究"
2025-05-09 00:18:58 898KB
1
人工智能 基于MATLAB实现传统图像去噪算法(均值滤波、中值滤波、非局部均值滤波NLM、三维块匹配滤波BM3D)和基于深度卷积神经网络的DnCNN图像去噪算法。 五种算法都是对Set12数据集进行去噪,去噪的结果并没有保存,只是在运行过程中能看到去噪前和去噪后的图像对比,感兴趣的朋友可以自己将图像保存下来观察。 随着数字图像处理技术的迅猛发展,图像去噪成为了一个热门的研究领域。在众多图像去噪算法中,传统算法因其简单、直观、易于实现而得到广泛应用。然而,随着深度学习技术的兴起,基于深度卷积神经网络的去噪算法开始崭露头角,尤其在处理含有复杂噪声的图像时显示出更大的优势。本篇文章将深入探讨基于MATLAB实现的传统图像去噪算法以及基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行对比实验。 传统图像去噪算法主要包括均值滤波、中值滤波、非局部均值滤波(NLM)以及三维块匹配滤波(BM3D)。这些算法各有其特点和应用场景。 均值滤波是一种简单有效的线性滤波器,它通过将图像中每个像素点的值替换为其邻域内像素点值的平均数来实现去噪。这种方法适用于去除高斯噪声,但会模糊图像细节,因为它是基于局部像素平均信息来进行去噪的。 中值滤波是一种非线性滤波技术,它将每个像素点的值替换为其邻域内像素点值的中位数。中值滤波在去除椒盐噪声方面效果显著,因为它不受个别噪声点的影响,但在处理含有大量细节的图像时可能会损失部分细节信息。 非局部均值滤波(NLM)是一种基于图像块相似性的去噪算法,它利用图像中的冗余信息,通过寻找图像中与当前处理块相似的其他块的加权平均来完成去噪。NLM算法在去除噪声的同时能较好地保持图像边缘和细节,但计算量较大,处理速度较慢。 三维块匹配滤波(BM3D)是一种先进的图像去噪算法,通过分组相似的图像块,利用三维变换去除噪声。BM3D算法通过两次协同过滤实现高效的图像去噪,其性能往往优于其他传统算法,尤其是在处理较为复杂的噪声时。 然而,传统图像去噪算法在处理含有大量噪声或需要高度去噪保留图像细节的场景时,往往效果有限。随着深度学习技术的出现,基于深度卷积神经网络的图像去噪算法成为研究的热点。深度学习算法能够从大量带噪声的图像中自动学习到有效的特征表示,并用于去噪任务。 在本篇文章中,作者实现了基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行了测试。DnCNN是一种端到端的深度神经网络结构,它通过逐层学习图像中的噪声模式,可以有效地从带噪声的图像中去除噪声,同时保持图像的清晰度和边缘细节。DnCNN算法在处理高斯噪声、泊松噪声以及混合噪声等方面都表现出色,是目前图像去噪领域的一个重要突破。 Set12数据集包含了多种类型的带噪声图像,包括自然场景、动物、植物等,非常适合用于测试不同去噪算法的性能。在实验中,作者并未保存去噪后的结果,而是提供了运行过程中的去噪前和去噪后的图像对比,使得读者可以在实验中直观地观察到算法效果。 通过在Set12数据集上对五种算法进行测试,我们可以观察到不同算法对于不同类型噪声的处理能力。传统算法在去除简单噪声时效果尚可,但在细节保持和复杂噪声处理方面往往不尽人意。而基于深度学习的DnCNN算法在这些方面表现更为出色,即便是在噪声水平较高的情况下也能保持较高的图像质量。 传统图像去噪算法和基于深度卷积神经网络的DnCNN图像去噪算法各有千秋,前者简单易实现,后者性能卓越。在实际应用中,可以根据具体需求选择合适的去噪方法。随着深度学习技术的不断进步,未来一定会有更多高效、鲁棒的去噪算法被开发出来,以满足人们对于高质量图像的需求。
2025-05-03 12:02:37 79.92MB MATLAB 图像去噪 去噪算法 深度学习
1
三相异步电机直接转矩控制DTC策略的Matlab Simulink仿真模型研究:PI转速控制与滞环转矩/磁链控制结合的传统策略分析,三相异步电机直接转矩控制DTC的Matlab Simulink仿真模型:涵盖PI控制、滞环控制及扇区判断等功能,三相异步电机直接转矩DTC控制 Matlab Simulink仿真模型(成品) 传统策略DTC 1.转速环采用PI控制 2.转矩环和磁链环采用滞环控制 3.含扇区判断、磁链观测、转矩控制、开关状态选择等. ,三相异步电机; DTC控制; Matlab Simulink仿真模型; 传统策略DTC; 转速环PI控制; 转矩环滞环控制; 扇区判断; 磁链观测; 转矩控制; 开关状态选择。,三相异步电机DTC控制策略的Matlab Simulink仿真模型研究
2025-04-21 16:54:55 2.33MB 数据结构
1
基于改进A*算法融合DWA算法的机器人路径规划MATLAB仿真程序(含注释) 包含传统A*算法与改进A*算法性能对比?改进A*算法融合DWA算法规避未知障碍物仿真。 改进A*算法做全局路径规划,融合动态窗口算法DWA做局部路径规划既可规避动态障碍物,又可与障碍物保持一定距离。 任意设置起点与终点,未知动态障碍物与未知静态障碍物。 地图可更改,可自行设置多种尺寸地图进行对比,包含单个算法的仿真结果及角速度线速度姿态位角的变化曲线,仿真图片丰富 在现代机器人技术研究领域中,路径规划算法是实现机器人自主导航与移动的关键技术之一。路径规划旨在使机器人从起点出发,通过合理的路径选择,避开障碍物,安全高效地到达终点。随着算法的不断发展,人们在传统的路径规划算法基础上提出了诸多改进方案,以期达到更好的规划效果。在这些方案中,改进的A*算法与动态窗口法(DWA)的结合成为了研究热点。 A*算法是一种广泛使用的启发式搜索算法,适用于静态环境下的路径规划。它基于启发信息估计从当前节点到目标节点的最佳路径,通过优先搜索成本最小的路径来达到目标。然而,A*算法在处理动态环境或者未知障碍物时存在局限性。为此,研究者们提出了改进A*算法,通过引入新的启发式函数或者优化搜索策略,以提升算法在复杂环境中的适应性和效率。 动态窗口法(DWA)则是一种局部路径规划算法,它通过在机器人当前速度空间中选取最优速度来避开动态障碍物。DWA通过评估在一定时间窗口内,机器人各个速度状态下的路径可行性以及与障碍物的距离,以避免碰撞并保持路径的最优性。然而,DWA算法通常不适用于长距离的全局路径规划,因为其只在局部窗口内进行搜索,可能会忽略全局路径信息。 将改进A*算法与DWA结合,可以充分利用两种算法的优势,实现对全局路径的规划以及对局部动态障碍物的即时响应。在这种融合策略下,改进A*算法用于全局路径的规划,设定机器人的起点和终点,同时考虑静态障碍物的影响。在全局路径的基础上,DWA算法对局部路径进行规划,实时调整机器人的运动状态,以避开动态障碍物。这种策略不仅保持了与障碍物的安全距离,还能有效应对动态环境中的复杂情况。 此外,该仿真程序还具备一些实用功能。用户可以自行设定地图尺寸和障碍物类型,无论是未知的动态障碍物还是静态障碍物,仿真程序都能进行有效的路径规划。仿真结果会以曲线图的形式展现,包括角速度、线速度、姿态和位角的变化,同时提供了丰富的仿真图片,便于研究者分析和比较不同算法的性能。这些功能不仅提高了仿真程序的可用性,也增强了研究者对算法性能评估的直观理解。 改进A*算法与DWA算法的融合是机器人路径规划领域的一个重要进展。这种融合策略通过全局规划与局部调整相结合的方式,提升了机器人在复杂和动态环境中的导航能力,使得机器人能够更加智能化和自主化地完成任务。随着算法研究的不断深入和技术的不断进步,未来的机器人路径规划技术将会更加成熟和高效。
2025-04-14 15:03:42 2.89MB edge
1
Pscad仿真模型程序-分布式电源接入对传统三段过流保护的影响 改变dg接入位置容量,考察其对配网传统三段过流保护影响,模型中搭建了详细三段过流保护模块,包含详细保护整定计算,仿真结果整整理48页。 这个方向的有很多,还有提出新的保护算法的,dg采用详细风光储建模的 在电力系统领域,分布式电源(DG)的接入对于传统电网的保护系统提出了新的挑战。特别是对三段过流保护的影响,是近年来研究的热点。本文档深入探讨了分布式电源接入位置和容量的变化对配电网传统三段过流保护机制的影响。 需要明确传统三段过流保护的概念。三段过流保护是一种阶梯式的保护策略,它根据过电流的严重程度来分段进行保护,能够对不同范围的故障进行快速、有选择性的隔离。第一段通常是最靠近故障点的保护,反应速度最快,但保护范围最小;第二段和第三段保护范围依次扩大,反应速度则相对减慢,以避免第一段保护误动作导致的保护范围过大。 在分布式电源接入电网后,原有的电流流向可能会发生变化,导致保护设置的参数不再适应新的运行情况。这是因为分布式电源往往带有自己的短路电流,这些电流与传统的电网电流叠加后,可能会引起保护装置的误动作或者拒动。例如,在DG接入位置较近时,其提供的短路电流可能会超过保护装置设定的电流门槛值,触发第一段过流保护动作,从而导致不必要的断路器动作。 因此,在分布式电源接入电网设计和运行中,需要重新评估和设计过流保护策略。这涉及到对保护整定计算的重新设计,以确保在分布式电源接入时保护系统的可靠性和有效性。仿真模型程序在这方面发挥着重要作用,它能够在不实际搭建物理电网的情况下,对保护策略进行模拟测试,快速地评估不同DG接入方案对过流保护的影响。 在本文档所提及的仿真模型程序中,构建了一个包含分布式电源的详细配电网模型,并在其中搭建了三段过流保护模块。仿真模型不仅包含了配电网的基本结构,还详细模拟了各种故障情况下的电流变化,以及保护装置的动作情况。通过这样的仿真,研究者可以观察到分布式电源接入位置和容量变化对过流保护的具体影响,并据此调整保护整定值,以确保保护策略的适应性和可靠性。 研究者们还提出了新的保护算法,比如利用通信技术的智能保护方案,以及针对分布式电源特点设计的自适应保护算法。这些新算法旨在更好地适应分布式电源接入电网带来的新情况,提高保护系统的灵活性和选择性。 文档中还提到了风光储建模的详细性,这意味着在仿真模型中,不仅考虑了分布式电源的发电特性,还考虑了其储能特性和可再生能源的波动性。这对于确保模型能够精确模拟真实世界的电力系统运行情况至关重要。 整体而言,本文档提供了一个深入分析分布式电源接入对传统三段过流保护影响的研究平台,并通过仿真模型程序来验证和优化保护策略,这对于未来智能电网的发展具有重要的理论和实践意义。
2025-04-09 12:11:10 387KB ajax
1
基于MATLAB Simulink仿真的三相四桥臂逆变器模型:应对不平衡负载的优化策略与性能分析,三相四桥臂逆变器MATLAB Simulink仿真模型:(应对不平衡负载) 三相四桥臂逆变器在传统的三相桥式逆变器的基础上增加了一个桥臂,通过增加一个桥臂来直接控制中性点电压,并且产生中性点电流流入负载。 模型不报错,参数可调。 1 增加了一个自由度,使三相四桥臂对逆变电源可以产生三个独立的电压,从而使其有在不平衡负载下维持三相电压的对称输出的能力 2 基于载波的PWM调制(HIPWM)),可以实现谐波注入与传统3D-SVPWM控制的等效,实现三相四桥臂相间耦合的问题 3 外环采用PR控制器,内环采用PI控制。 并针对非线性负载产生的5、7次谐波电流,采用比例多谐振控制, 即并联入5、7次谐振控制器 4 附带参考文献和仿真报告 ,三相四桥臂逆变器; MATLAB Simulink仿真模型; 不平衡负载; 电压对称输出; 载波的PWM调制; HIPWM; PR控制器; PI控制; 谐波电流; 比例多谐振控制,基于Simulink仿真的三相四桥臂逆变器模型:不平衡负载下的电压维持与谐波
2025-03-31 17:44:20 443KB safari
1
双有源桥DAB DC-DC变器负载电流前馈控制。 以SPS单移相为例。 相比传统电压闭环控制,改善电路对负载变化的动态性能,缩短调节时间,降低超调。 为便于对比,两组控制下pi参数设为一致。 matlab simulink plecs等环境
2024-12-17 05:15:50 208KB matlab
1
"W3335HA1 传统模式启动bios.zip" 提供的是与BIOS设置相关的资料,尤其强调了“传统模式启动”。在个人计算机系统中,BIOS(基本输入输出系统)是固件层的核心部分,负责在开机时执行初始化任务,并为操作系统提供硬件接口。传统模式启动是指在BIOS中选择不使用UEFI(统一可扩展固件接口)启动方式,而是使用更早期的MBR(主引导记录)启动机制。 虽然简洁,但暗示了该压缩包可能包含的是指导用户如何在特定型号的设备——W3335HA1上设置或恢复BIOS到传统启动模式的步骤、文件或手册。这通常涉及到对BIOS设置界面的操作,比如更改启动顺序、关闭安全启动等,以便于安装或管理那些不支持UEFI启动的操作系统或者需要特定启动方式的软件。 为空,意味着没有给出额外的分类信息,因此我们只能依据标题和描述来推测内容。 【压缩包子文件的文件名称列表】中的 "W3335HA1 传统模式启动bios" 可能是一个文本文件、PDF文档或图片,详细说明了如何操作W3335HA1设备的BIOS设置,以进入或恢复传统模式启动。可能包括以下内容: 1. **BIOS进入方法**:通常是在开机过程中按特定键(如F2、Delete或Esc)进入BIOS设置界面。 2. **启动选项**:解释如何找到并修改启动顺序,确保设备在启动时优先查找硬盘或其他存储设备的MBR。 3. **安全启动设置**:如果设备支持UEFI,可能需要禁用安全启动,因为这会阻止非签名的MBR加载。 4. **保存与退出**:说明如何保存所做的更改并退出BIOS设置,通常会提示用户按F10并确认保存。 5. **注意事项**:可能包含关于备份当前BIOS设置、避免误操作以及在不正确设置可能导致的启动问题等方面的警告。 6. **故障排查**:如果用户遇到问题,可能还会有相应的解决步骤,例如如何重置BIOS到默认设置。 7. **软件工具**:有时,BIOS更新或恢复可能需要特定的工具或程序,这些可能会作为压缩包的一部分提供。 这个压缩包是针对W3335HA1设备用户的一个实用资源,帮助他们理解并操作BIOS以适应传统模式启动的需求,这对于安装某些老版本的操作系统或特定软件时尤为重要。用户在使用前应仔细阅读并按照指南操作,以避免可能导致系统无法启动的错误。
2024-10-21 20:19:28 103.48MB
1
锂电池主动均衡simulink仿真 四节电池 基于buckboost(升降压)拓扑 (还有传统电感均衡+开关电容均衡+双向反激均衡+双层准谐振均衡+环形均衡器+cuk+耦合电感)被动均衡电阻式均衡 、分层架构式均衡以及分层式电路均衡,多层次电路,充放电。
2024-10-06 17:39:34 38KB
1
PEPS(Passive Entry Passive Start)无钥匙进入系统是一种先进的汽车安全技术,它结合了无钥匙进入和无钥匙启动的功能,极大地提升了驾驶者的便利性。本文将深入探讨PEPS系统的概念、传统PEPS的结构与功能,以及数字钥匙系统的特点。 1、什么是PEPS PEPS,全称为被动式进入被动式启动系统,是一种无需驾驶员手动操作钥匙即可实现车辆解锁、上锁及启动的系统。通过射频识别(RFID)技术,PEPS系统能够检测到车主携带的智能钥匙是否靠近车辆,从而自动完成相应的操作,提供更智能化的驾驶体验。 2、传统PEPS 2.1 PEPS系统架构图 传统PEPS系统主要包括门把手传感器、车身控制模块(BCM)、钥匙识别模块、发动机控制单元(ECU)等组件。当智能钥匙接近车辆时,系统会通过LF(低频)信号进行身份验证,确认无误后,再通过UHF(超高频)信号进行车辆解锁。 2.2 PEPS硬件框图 - LF Driver(低频驱动器):负责发送LF信号,与钥匙进行初步的身份认证。 - UHF Receiver(超高频接收器):接收钥匙发出的UHF信号,用于更精确的位置检测和解锁命令。 - MCU(微控制器单元):作为系统的核心,处理所有的信号接收、处理和发送任务。 - 钥匙端应用芯片:集成在智能钥匙内,包含RFID芯片,用于响应车辆的LF和UHF信号。 3、PEPS系统功能 3.1 PE功能(无钥匙进入) 驾驶员走近车辆时,无需掏出钥匙,车门会自动解锁。离开车辆一段距离后,车门会自动上锁。 3.2 PS功能(无钥匙启动) 驾驶员进入车内,只需按下启动按钮,无需插入钥匙,车辆就能启动。 3.3 RKE功能 远程控制功能,允许车主通过遥控钥匙执行开锁、上锁、寻车、开启后备箱等操作。 3.4 启动开关LED指示 系统通过LED灯显示车辆状态,如解锁、上锁、启动等。 3.5 远程功能 部分传统PEPS系统还支持远程启动、远程空调预设等功能,通过手机APP或遥控钥匙实现。 4、数字钥匙系统 随着科技的发展,数字钥匙系统逐渐成为PEPS的新趋势。它利用智能手机或云端服务替代传统的物理钥匙,通过蓝牙或近场通信(NFC)技术实现车辆的解锁和启动。数字钥匙系统提供了更高的灵活性,比如钥匙分享、远程授权、位置追踪等功能,同时增强了安全性,因为数字信息更难被复制或破解。 总结来说,PEPS无钥匙进入系统以其便捷性和安全性在现代汽车行业广泛应用。从传统PEPS到数字钥匙系统,技术的进步不断推动着汽车智能化的进程,为消费者带来更加舒适和安全的驾驶环境。随着物联网和5G等新技术的融入,未来的PEPS系统有望实现更多创新功能,进一步提升驾驶体验。
2024-09-22 18:41:18 1007KB PEPS 数字钥匙
1