在低照度场景下进行目标检测任务,常存在图像RGB特征信息少、提取特征困难、目标识别和定位精度低等问题,给检测带来一定的难度。 使用图像增强模块对原始图像进行画质提升,恢复各类图像信息,再使用目标检测网络对增强图像进行特定目标检测,有效提高检测的精确度。 本资源包含传统方法、Retinex、EnlightenGAN、SCI、Zero-DCE、IceNet、RRDNet、URetinex-Net等低照度图像增强代码,均已经过测试,可直接运行。 ### 低照度图像增强技术概述 在计算机视觉领域,特别是在目标检测任务中,低照度环境下的图像处理是一项极具挑战性的任务。由于光线不足,这类图像通常具有较差的可视性,导致RGB特征信息减少,这直接影响到后续的特征提取、目标识别与定位的准确性。为了解决这一问题,研究者们开发了多种图像增强技术,通过对原始图像进行画质提升,恢复图像中的关键信息,从而改善目标检测的效果。 ### 图像增强技术原理 图像增强技术主要是指通过一系列算法处理来改善图像质量的过程。在低照度环境下,主要目的是增强图像亮度、对比度以及颜色信息,以便更好地提取特征。这些技术可以大致分为两类:传统图像处理方法和基于深度学习的方法。 #### 传统图像处理方法 1. **Retinex算法**:Retinex是一种经典的图像增强算法,它模拟人眼感知颜色的方式,通过多尺度分析来恢复图像的真实色彩和细节。 2. **SCI(Single Image Contrast Enhancement)**:这是一种单图像对比度增强方法,通过调整图像的局部对比度来增强图像的细节。 3. **Zero-DCE(Zero-reference Deep Curve Estimation)**:这是一种无需任何参考图像就能进行曲线估计并实现图像增强的技术。 #### 基于深度学习的方法 1. **EnlightenGAN**:这是一种结合生成对抗网络(GAN)的图像增强方法,能够生成更逼真且自然的图像,适用于低照度环境。 2. **IceNet**:IceNet是一种基于深度学习的低光照图像增强模型,能够有效地恢复图像的细节,并保持良好的视觉效果。 3. **RRDNet(Recurrent Residual Dense Network)**:这是一种利用循环残差密集网络进行图像增强的技术,适用于低光照条件下的图像恢复。 4. **URetinex-Net**:这是结合了U-Net架构和Retinex理论的一种深度学习模型,专门用于低照度图像的增强。 ### 技术应用案例 以上提到的各种技术均有其应用场景。例如,在安防监控、夜间野生动物监测等领域,低照度图像增强技术的应用至关重要。通过使用这些技术,可以显著提高图像的质量,进而提高后续处理如目标检测、人脸识别等任务的准确率。 ### 实践资源 为了方便研究者和开发者进行实践探索,提供了一系列低照度图像增强的代码资源,包括但不限于上述提及的各种技术。这些代码经过测试验证,可以直接运行使用。具体资源可以通过链接:[https://pan.baidu.com/s/1H52f68LmRv9ohi5N4sS5jg](https://pan.baidu.com/s/1H52f68LmRv9ohi5N4sS5jg) 获取,提取码为:j666。 ### 结论 低照度图像增强技术对于提高计算机视觉任务的性能至关重要。无论是传统的图像处理方法还是近年来兴起的基于深度学习的技术,都在不断地推动着该领域的进步和发展。通过合理选择和应用这些技术,可以极大地改善低照度条件下图像的质量,进而提高目标检测等任务的准确性和可靠性。未来,随着更多新技术的出现和现有技术的不断优化,低照度图像增强领域将展现出更加广阔的应用前景。
2025-05-07 15:58:05 10KB 图像增强 深度学习
1
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-03-29 21:10:08 3.87MB matlab
1
该项目包含Retinex、EnlightenGAN、SCI、Zero-DCE、IceNet、RRDNet、URetinex-Net等低照度图像增强代码,均已经过测试,可直接运行。
2024-05-13 18:40:16 10KB Retinex 图像增强
1
低照度图像增强算法的研究与实现_彭波,研究了增强算法
2022-05-14 14:38:47 251KB 增强算法
1
在MSR图像增强算法的基础上进行了改进,采用RGB与HSV颜色空间的快速转换算法,并在MSR算法中用快速均值滤波代替高斯模板卷积,提高算法运算速度;对增强后的图像采用自动截断式对比度拉伸方法,提高增强后图像的对比度。实验结果表明,本算法在提高图像质量的同时,算法速度提高3~4倍。
2022-04-21 20:50:59 439KB 数码影像
1
针对低照度条件下图像对比度不高、颜色失衡和存在噪声等问题,提出了一种基于多分支全卷积神经网络(MBACNN)的低照度图像增强模型。该模型是一个端到端的模型,包含特征提取模块(FEM)、增强模块(EM)、融合模块(FM)和噪声提取模块(NEM)。通过对合成的低照度和高清图像样本进行训练,根据验证集的损失值不断调整模型参数,以得到最优模型;然后对合成低照度图像和真实低照度图像进行测试。实验结果表明,与传统的图像增强算法相比,所提出的模型能够有效提高图像对比度、调整颜色失衡并去除噪声,主观视觉和客观图像质量评价指标都得到进一步改善。
2022-04-06 19:58:02 13.79MB 图像处理 卷积神经 特征融合 低照度图
1
针对低照度条件下图像降质严重的问题, 提出了一种基于深度卷积神经网络(DCNN)的低照度图像增强算法。该算法根据Retinex模型合成训练样本, 将原始低照度图像从RGB (Red Green Blue)空间转换到HSI (Hue Saturation Intensity)颜色空间, 保持色度分量和饱和度分量不变, 利用DCNN对亮度分量进行增强, 最后将HSI颜色空间转换到RGB空间, 得到最终的增强图像。实验结果表明, 与现有主流的图像增强算法相比, 所提算法不仅能够有效提升亮度和对比度, 改善过增强现象, 而且能够避免色彩失真, 主观视觉和客观评价指标均得到了进一步提高。
2022-03-14 16:29:46 13.55MB 图像处理 图像增强 Retinex模 卷积神经
1
针对多尺度Retinex算法在处理煤矿井下低照度图像时存在细节增强不足和耗时等问题,提出了一种基于光照校正的快速多尺度Retinex算法对煤矿井下低照度图像进行增强。该算法通过计算高斯模糊后图像的每个像素点的亮度值,将图像划分为暗调区域和高光区域,并对不同区域进行光照校正,从而降低高光区域的亮度,保证不过分曝光,同时提升较暗区域的亮度,凸显更多细节信息;利用三次快速均值滤波代替高斯滤波来估计光照强度,减少算法耗时。实验结果表明,该算法能有效提高图像的亮度和对比度,增强图像中暗调区域和高光区域的细节,具有较快的处理速度。
2022-01-20 12:02:09 1.02MB 行业研究
1
针对光照不均匀、光线暗等环境导致图像采集单元采集到的图像视觉效果差、噪声大等问题,本文提出一种基于视网膜和皮层(Retinex)理论改进的低照度图像增强算法去恢复图像原有的视觉特征。将低照度图像从红、绿、蓝(RGB)空间转换到色调、饱和度、亮度(HSV)空间,在HSV空间的V通道去对低照度图像进行处理,这样能够避免图像三基色比例关系被破坏;采用改进的多尺度Retinex (MSR)算法估计光照分量,用非局部均值(NLM)滤波代替高斯滤波,利用滤波窗口与相邻窗口间的递归关系来简化计算,不仅能准确估计光照分量,还能够提高图像的处理速度;最后进行颜色空间逆变换,转换到人眼习惯的RGB颜色空间。实验结果表明该算法可以有效提高图像清晰度,保护图像的细节信息。
1
基于Retinex的MSRCR算法,MATLAB实现
2021-07-14 17:03:28 1KB MATLAB Retinex 低照度
1