基于MATLAB/Simulink构建的光伏并网逆变器低电压穿越仿真模型。该模型采用了Boost升压电路和NPC三电平逆变器的组合拓扑结构,支持SVPWM控制和正负序分离控制。文中解释了模型的关键组件及其工作原理,如Boost电路的电压提升机制、NPC逆变器的中点平衡控制、正负序分离控制的实现方法以及锁相环(PLL)的改进措施。此外,还讨论了模型在不同电网电压条件下的表现,特别是在电压骤降情况下的低电压穿越能力。 适用人群:电力电子工程师、光伏系统设计师、MATLAB/Simulink用户、科研人员。 使用场景及目标:①研究光伏并网系统的低电压穿越性能;②优化逆变器控制系统的设计;③验证不同控制策略的有效性;④提高对光伏并网系统的工作原理和技术细节的理解。 其他说明:该模型适用于MATLAB 2018及以上版本,在2020b及以上版本中仿真速度更快。实际应用中需要注意中点电压波动的问题,并预留足够的硬件余量。
2025-09-13 12:14:00 1.86MB
1
内容概要:本文详细介绍了基于MATLAB/Simulink平台构建的光伏并网逆变器低电压穿越(LVRT)仿真模型。该模型采用了Boost升压电路与NPC三电平逆变器相结合的拓扑结构,支持SVPWM调制和正负序分离控制。文中深入探讨了各个关键组件的工作原理及其在Simulink中的具体实现方法,如电压跌落检测逻辑、中点平衡控制、正负序分离控制以及锁相环(PLL)优化。此外,还提供了针对不同MATLAB版本的注意事项和技术细节。 适用人群:从事电力电子、新能源发电领域的研究人员和工程师,特别是对光伏并网逆变器低电压穿越技术感兴趣的读者。 使用场景及目标:本模型主要用于研究和验证光伏并网逆变器在电网电压骤降情况下的性能表现,帮助工程师理解和优化LVRT功能的设计。通过该模型可以模拟不同的电网故障条件,评估逆变器的响应特性,从而提高系统的稳定性和可靠性。 其他说明:该模型适用于MATLAB 2018及以上版本,在2020b版本中仿真速度更快。实际应用中需要注意中点电压波动等问题,并预留足够的硬件裕度。
2025-07-17 10:53:11 1.2MB
1
内容概要:本文详细探讨了虚拟同步发电机(VSG)在电网电压骤降情况下的低电压故障穿越(LVRT)控制策略和技术实现。针对传统VSG控制在电压骤降时易崩溃的问题,提出了一种基于模式平滑切换的方法。主要内容包括:利用状态观测器实时监测电网电压,通过动态调整虚拟阻抗和惯量实现平稳过渡;采用动态限幅算法控制有功功率变化,减少功率突变引起的二次震荡;引入状态变量衔接机制,确保模式切换过程中系统的稳定性。实验结果显示,该方法显著降低了电流谐波和功率振荡,提高了系统的鲁棒性和可靠性。 适合人群:从事电力系统研究、新能源发电并网技术研发的专业人士,以及对VSG技术和低电压穿越感兴趣的工程技术人员。 使用场景及目标:适用于新能源发电系统中VSG的低电压故障穿越控制,旨在提高系统在电网电压骤降时的稳定性和安全性,确保快速恢复正常运行。 其他说明:文中提供了详细的代码实现和仿真结果,强调了实际应用中的注意事项,如模式切换阈值设置、电流限制动态调整等。
2025-06-30 23:21:19 643KB
1
基于模式平滑切换的虚拟同步发电机低电压穿越控制策略全面复现,低电压故障穿越控制,基于模式平滑切的同步发电机低电压穿越控制方法(文章完全复现)。 关键词:VSG,低电压穿越,模式平滑切。 ,VSG; 低电压穿越; 模式平滑切换。,"VSG技术下的低电压穿越控制与模式平滑切换策略" 在当前电力系统研究中,低电压故障穿越控制技术是一个重要的研究领域,尤其在虚拟同步发电机(VSG)技术的发展背景下,更显得至关重要。VSG技术是一种新型的发电机控制技术,旨在模仿传统同步发电机的动态行为,同时通过电力电子接口与电网进行互动。这种技术在提高电力系统的稳定性、灵活性以及对可再生能源集成的适应性方面具有显著优势。 低电压穿越(LVRT)能力是指在电网电压下降的情况下,发电机组能够维持并网运行,不过电流和功率波动在规定范围内的能力。对于风力发电、太阳能发电等可再生能源的发电机组来说,低电压穿越能力的缺失可能导致与电网的断开,从而造成发电量的损失,甚至可能引起大规模的电力系统不稳定。 在这一研究领域中,模式平滑切换策略是指在VSG运行过程中,当电网发生低电压等故障时,通过平滑地切换到特定的控制模式来维持发电机组的稳定运行,减少对电网的冲击。这种策略能够在电网电压跌落时,迅速调整发电机组的输出,以满足电网的稳定要求,同时保持发电机组的连续运行,提高电网故障时的系统稳定性。 文章《基于模式平滑切换的虚拟同步发电机低电压穿越控制策略全面复现》深入探讨了这一控制策略,不仅理论上分析了低电压穿越过程中发电机组的控制要求,还通过仿真实验验证了该控制策略的有效性。文章详细描述了在不同类型的低电压故障下,如何通过模式平滑切换来实现发电机组的低电压穿越,并且分析了不同控制参数对穿越性能的影响。 文档列表中包含了各种关于低电压穿越控制技术的研究资料,如“低电压故障穿越控制一直是电力系统中的热点问题”、“低电压故障穿越控制技术分析随着电力电子技术的发展而出现的新问题”等,这些文档不仅为理解低电压穿越技术提供了丰富的背景信息,还展示了该技术在电力系统中的实际应用和发展趋势。通过对这些文档的综合分析,可以看出低电压穿越控制技术在保障电力系统稳定运行方面的重要性,以及其在未来电力系统智能化、灵活化发展中的潜在作用。 此外,文档中的图片文件“1.jpg”可能为文章中的某些关键概念或实验结果提供了直观的视觉展示,而其他文本文件如“技术低电压故障穿越控制的探索与实现在电力系统的日常”、“低电压故障穿越控制技术分析一引言在当今快速发展的电力系统中”等,则可能对控制策略的实际应用案例和进一步的研究方向提供了更深入的探讨。 低电压穿越控制技术的研究不仅是电力系统稳定运行的需要,也是可再生能源高效集成到电网中的重要保障。随着电网技术的发展和电力电子设备的进步,低电压穿越控制技术将发挥更加关键的作用,而模式平滑切换策略作为其中的关键技术之一,将会得到更广泛的应用和研究。
2025-06-30 23:20:51 374KB kind
1
内容概要:本文深入探讨了直驱永磁风机的Simulink仿真模型,重点介绍其网侧和机侧的控制策略及其在低电压穿越方面的具体实现。模型涵盖了网侧的并网和脱网控制、机侧的内外双环控制(如零d轴电流控制和最优转矩控制)、风速模拟和最大功率点跟踪(MPPT)。此外,还提供了相关风机电压穿越文献和参数报告,帮助理解和优化风机性能。 适合人群:从事风电技术研发、仿真建模的专业技术人员,以及对直驱永磁风机控制系统感兴趣的科研人员。 使用场景及目标:适用于需要深入了解直驱永磁风机控制策略的研发项目,特别是在低电压穿越技术和最大功率点跟踪方面的需求。目标是提升风机系统的稳定性和可靠性,推动风电技术的发展。 其他说明:文中提供的文献资料和参数报告为实际应用提供了重要的参考依据,建议读者结合这些资料进行深入研究和实践。
2025-06-28 17:13:03 1.4MB
1
混合储能系统Matlab仿真模型:含低电压穿越模块的稳态与故障特性研究,混合储能Matlab仿真模型:含低电压穿越模块的稳态与故障特性研究,混合储能matlab仿真模型,并且含低电压穿越模块,适用于研究稳态特性和故障特性 ,混合储能; MATLAB仿真模型; 低电压穿越模块; 稳态特性; 故障特性,混合储能系统Matlab仿真模型:低电压穿越模块下的稳态与故障特性研究 混合储能系统是一种新型的储能技术,它结合了不同类型的储能单元,以弥补单一储能技术在能量密度、功率密度、循环寿命等方面的不足。Matlab仿真模型为混合储能系统的研发和分析提供了一个强大的工具,可以模拟和分析混合储能系统在不同工况下的性能表现。 在混合储能系统中,低电压穿越(Low Voltage Ride Through, LVRT)模块是关键技术之一,它指的是当电网电压下降到规定值以下时,储能系统仍能保持与电网的连接,并提供一定的无功功率支持,保证电网的稳定运行。LVRT模块的加入能够有效提高混合储能系统在电网故障时的稳定性,增强系统的抗干扰能力。 研究混合储能系统Matlab仿真模型时,稳态特性和故障特性是两个重要的研究方向。稳态特性涉及系统在正常运行条件下的性能,包括充放电效率、输出功率、能量转换效率、系统稳定性等;而故障特性则关注在电网电压跌落、短路或其他异常情况下的系统反应,如LVRT能力、故障电流抑制、故障恢复能力等。 通过Matlab仿真模型,可以对混合储能系统在各种工况下的稳态和故障特性进行深入分析。例如,可以模拟电网电压跌落时储能系统的反应,评估LVRT模块的有效性,分析储能单元的充放电过程和能量管理策略,以及优化整个系统的控制算法。这些仿真不仅可以验证理论分析的正确性,还可以在实际装置制造之前预测可能出现的问题,从而为系统设计和控制策略的优化提供理论依据。 此外,Matlab仿真工具提供的强大计算能力和丰富的模块库,使得研究人员可以在计算机上构建复杂系统的仿真模型,进行参数优化和多场景模拟,加快了混合储能系统研究的进度。通过仿真模型的研究,可以系统地分析和评估混合储能系统的性能,为工程应用和进一步的理论研究提供坚实的基础。 在实际应用中,混合储能系统的成功案例和仿真模型的研究成果能够促进储能技术在电力系统中的广泛应用,提高电网的可靠性和灵活性,支撑可再生能源的大规模接入和消纳,对实现能源结构转型和绿色低碳发展具有重要意义。 混合储能系统Matlab仿真模型的研究不仅有助于深入理解混合储能系统的运行机制,而且对于提升系统的整体性能、优化控制策略、增强LVRT能力等方面都具有重要的理论和实际应用价值。随着储能技术的不断进步和对电力系统稳定性要求的提高,混合储能系统及其Matlab仿真模型的研究将更加受到重视,并在未来的能源和电力系统中发挥关键作用。
2025-04-22 21:17:46 525KB sass
1
在江苏地区各风电场相关参数及低电压穿越能力测试数据的基础上,在DIgSILENT中对基于双馈风电机组的大规模风电场进行建模,可详细描述风电场内各风机低电压穿越的动态特性。在不同的电压跌落场景下,对风电场内部各风电机组的不同故障反应特性进行比较分析,确定整个风电场的低电压穿越能力并得出规律性结论。通过严重故障仿真得到风电场内部风机的脱网时序分布,分析了风机之间交互影响机理与连锁脱网的详细过程。最后,提出适当提高撬棒保护整定值、网侧变换器灵活运行和采用SVC等装置进行动态无功补偿可以提高风电场低电压穿越能力。
2024-08-30 15:15:53 1.43MB
1
堆高机,高尔夫球车和电动工具的电动牵引部分是需要低电压,高电流的STEVAL-CTM009V1套件方案是展示基于STripFET:trade_mark:F7技术的ST功率MOSFET的功能, 搭配L6491高电流能力栅极驱动器是这应用的理想选择。 STEVAL-CTM009V1套件由STEVAL-CTM004V1,STEVAL-CTM005V1,STEVAL-CTM006V1,STEVAL-CTM008V1板组成,这些板组装在一起,为三相电机构建逆变器功率级。STEVAL-CTM004V1电源板具有绝缘金属基板(IMS),用于热保护的NTC和用于每个功率MOSFET的去耦栅电阻。该板将ST器件安装在H²PAK-6封装中。驱动级是STEVAL-CTM006V1电路板,带有L6491高电流能力栅极驱动器,用于驱动功率MOSFET和用于保护的集成比较器。驱动板包括ST电机控制连接器,因此您可以将STEVAL-CTM009V1与适用于电机控制的任何ST MCU控制板连接。该系统还有一个STEVAL-CTM005V1总线连接电容板,用于连接48 VDC电源(例如电池)以管理纹波电流,STEVAL-CTM008V1电流感应板用于读取三相电流和直流母线电流。 STEVAL-CTM009V1套件旨在让您评估STH31 * N10F7功率MOSFET,其中由高端和低端L6491高电流能力栅极驱动器驱动。 该系统包括大容量电容器电路板和电流感应板。STEVAL-CTM009V1可与任何带有嵌入式ST电机控制的ST MCU评估板连接 和ST FOC固件库支持。该套件已使用STEVALHKI001V1的STEVAL-CTM001V1C控制板进行测试,具有STM32F303RB 32位微控制器。 STEVAL-HKI001V1是一款工业驱动评估系统,旨在展示用于电机控制应用的A2C35S12M3-F IGBT功率模块的功能。它为单相或三相主输入提供解决方案,采用转换器逆变器制动(CIB)拓扑结构,能够处理高达35 A的电机电流(功率模块最大额定电流)。硬件平台是一个可堆叠的解决方案,包括功率级(STEVALCTM002V1),其中包含电源模块和电流感应电路,以及通过外部连接器连接的驱动套件(STEVAL-CTM001V1)。 STEVAL-CTM001V1驱动套件包括一个基于STM32F303RBT7微控制器的STEVAL-CTM001V1C控制板,能够执行磁场定向控制(FOC)算法,以在所有电机控制应用中获得最佳性能,以及STEVAL-CTM001V1D驱动板基于新型电隔离STGAP1AS gapDRIVE:trade_mark:,具有合适的电路,可驱动电源模块中的嵌入式IGBT。控制板具有RS232和CAN外部接口,可让您通过PC在评估系统上监控和控制应用程序。 STEVAL-CTM004V1电源板具有36个STH31 * N10F7 N沟道功率MOSFET H²PAK-6封装。在每个功率MOSFET附近放置一个栅极电阻,以消除寄生振荡。一个每个晶体管的栅极和源极之间的下拉电阻有助于避免电容耦合驱动栅极浮动时晶体管和不需要的导通。每个开关上的缓冲RC电路限制了速率开关转换期间的电压变化,以减少电磁干扰(EMI)和损耗。靠近开关功率MOSFET的两个去耦电容可减少VDS上的振铃和电压应力在设备上。电容器减少寄生电流突然电流变化引起的电压过冲电路中的电感器。为了监控电源板的温度并提供过温保护,放置了三个NTC在每个逆变器支路的一个功率MOSFET的漏极附近的电源板上。电源部分还有驱动板连接器,带CON5(phase_U),CON6(phase_V)和CON7(phase_W)用于栅极驱动和NTC传感,J3用于总线电压。 N沟道功率MOSFET采用STripFET:trade_mark:F7技术,具有增强型沟槽栅极结构低导通电阻,降低内部电容和栅极电荷,实现更快,更高效的开关。STH315N10F7 N沟道功率MOSFET具有以下特性: •专为汽车应用而设计,符合AEC-Q101标准 •市场上最低的RDS(on) •出色的品质因数(FoM) •低Crss / Ciss比率,用于EMI抗扰度 •高雪崩坚固性 在EV逆变器系统中,总线连接电容器可降低纹波电流并抑制由泄漏引起的电压尖峰电感和开关操作。 这些电容为纹波电流提供低阻抗路径由输出电感负载,总线电压和PWM频率引起。STEVAL-CTM008V1电流检测板是一种通用电路控制板,可以读取如果四个ICS在板上,则三相电机电流和直流母线电流。 套件中包含的主板有两个ICS读取两相电流。该传感功能可根据FOC算法确定用于数字控制的电机电流。 传感器提供高精度,在-40°C至+ 105°C的温度范围内具有4 m
2024-06-04 10:28:26 7.8MB 电机控制 电路方案
1
风电发电低电压穿越PSCAD模型,适合学习风电的亲们看看,相互学习
2024-03-27 11:18:49 427KB 低电压穿越
1
吉时利仪器公司日前推出专为低电压测试而优化的低成本方案—2400系列数字源表。新推出的2401型数字源表与所有吉时利SMU(源测量单元)仪器一样,对光伏(太阳能)电池、高亮度LED(HBLED)、低压材料和半导体器件的电流与电压(I-V)特性分析以及电阻测量等高精度测试应用进行了优化。
2024-03-27 06:30:15 55KB 测试测量仪器
1