轨对轨运放,顾名思义,是一种能够将输入信号放大到接近电源电压极性的运算放大器。这种运放的设计使得输入电压范围可以从负电源电压延伸到正电源电压,同时输出电压也能达到电源电压的轨(即最高和最低电压点),因此得名“轨对轨”。这种特性显著扩展了信号的电压摆幅,使得在低电源电压或单电源电压的环境中,电路仍能保持较宽的输入共模电压范围和输出摆幅。 1. 轨对轨输入运放:这类运放的输入端可以处理的电压范围从负电源轨到正电源轨,允许输入信号在整个电源电压范围内变化,减少了交越失真,这对于驱动模数转换器(ADC)尤其重要,因为它能确保在转换过程中信号不失真。 2. 轨对轨输出运放:输出端同样能在接近电源电压的范围内工作,这使得运放能够在负载变化时保持较大的输出动态范围,尤其是在低电源电压下,能够提供接近电源电压的输出电压,提高了系统的整体性能。 3. 技术实现:轨对轨运放通常采用电流模输入结构,结合NPN/PNP互补输入晶体管,这些设计允许输入端的电压更接近电源电压,而不会导致过早的饱和或截止。对于输出端,可能采用特定的输出级设计,比如多级放大器结构,来实现接近电源轨的输出电压。 4. 应用场景:轨对轨运放广泛应用于低电压和单电源供电的系统,如便携式设备、电池供电的电子设备和高精度测量仪器。它们在音频放大、数据采集系统、传感器接口电路和精密信号处理等应用中表现出色。 5. 优缺点:尽管轨对轨运放提供了更大的电压范围,但并非所有此类运放都能在大电流情况下保持轨对轨性能。此外,它们的输出电流通常较小,不适合需要大电流驱动的负载。另外,相对于传统的运放,轨对轨运放可能有更高的噪声水平,尤其是在CMOS工艺制造的型号中。 6. 电源选择:在设计电路时,选择合适的电源供电方式至关重要。双电源输入虽然能提供更宽的动态范围,但电路复杂度增加;而单电源输入则简化了电路,但可能牺牲一些性能。在高性能运算放大器电路中,往往倾向于采用轨对轨设计方案,以兼顾性能和简洁性。 7. 注意事项:在实际应用中,必须考虑到电源设计和去耦平衡,以确保轨对轨运放的性能得到充分发挥。同时,对于电源电压较低的系统,轨对轨运放的共模输入范围和阈值电压的匹配显得尤为重要,以满足低电压、低功耗的需求。 轨对轨运放是现代模拟电路设计中的一个重要组成部分,它通过拓宽信号的电压范围,提升了运算放大器在各种应用场景下的效能,特别是对于那些电源电压受限的系统,其优势尤为明显。然而,设计师在选用和设计时,还需要根据具体需求权衡其性能和局限性。
2025-12-26 13:11:31 66KB 运算放大器 共模电压 模拟电子
1
共模辐射是由于接地电路中存在电压降(如下图),某些部位具有高电位的共模电压,当外接电缆与这些部位连接时,就会在共模电压激励下产生共模电流,成为辐射电场的天线。这多数是由于接地系统中存在电压降所造成的。共模辐射通常决定了产品的辐射性能。
2025-12-16 16:06:20 336KB
1
开关电源的电磁干扰(EMI)控制技术是电子工程师必须掌握的关键技能之一。电磁干扰可造成电子设备性能下降,严重时可导致设备无法正常工作。本文将从开关电源EMI的产生机理入手,探讨一系列抑制EMI的策略,以提高电源的电磁兼容性(EMC)。 开关电源的工作原理是将工频交流电整流为直流电,然后逆变为高频交流电,通过变压器隔离并调整电压,最终整流滤波输出稳定的直流电压。功率半导体器件,如三极管、二极管,是开关电源中的核心部件,它们在微秒量级内完成开闭动作。在这过程中,电流变化剧烈,产生射频能量,成为干扰源。高频变压器的漏感和输出二极管的反向恢复电流也会产生干扰。由于开关电源工作频率高,其分布电容不能忽略,这些分布电容在高频时会通过散热片等路径形成共模干扰。 EMI由三个基本要素组成:干扰源、耦合途径和敏感设备。为了控制EMI,必须从这三个方面入手,主要措施包括抑制干扰源、切断耦合途径以及提高敏感设备对干扰的抵抗能力。开关电源的EMI控制技术主要包括滤波技术、屏蔽技术、密封技术和接地技术。 EMI干扰可分为传导干扰和辐射干扰。传导干扰主要通过电源线或信号线传播,其频率范围宽,可达10kHz至30MHz。抑制传导干扰的方法根据不同的频段采取不同的策略。在10kHz至150kHz范围,通常使用LC滤波器解决常态干扰问题;在150kHz至10MHz范围,主要采用共模抑制滤波器来减少共模干扰;而对于高于10MHz的频段,则需要改进滤波器的结构和增加电磁屏蔽。 交流输入EMI滤波器是一种常用的抑制技术,用于抑制电源线上的共模干扰和差模干扰。滤波器中的差模电容用于短路差模干扰电流,而接地电容则用于短路共模干扰电流。共模扼流圈通过磁耦合抵消差模干扰电流,并对共模干扰电流呈现较大电感,从而衰减共模干扰信号。 此外,改善开关电源中功率器件的开关波形也是减少EMI的有效手段。例如,RCD浪涌电压吸收回路能有效减小开关管或二极管在开通和关断过程中的浪涌电压,降低因变压器漏感和线路电感引起的EMI。 在实际应用中,开关电源EMI控制技术的选择需根据电源的具体工作环境和电磁兼容性要求来确定。通过采用一系列的EMI控制策略,可以在确保开关电源性能的同时,减少对周围电磁环境的影响,从而提高整个系统的稳定性和可靠性。
1
全差分运放电路电路源文件,包含模块有:折叠共源共栅结构运放,开关电容共模反馈,连续时间共模反馈电路,gainboost增益自举电路,密勒补偿调零,偏执电路,二级结构。 指标大致如下,增益140dB左右,带宽大于1G,相位裕度>60,等效输入噪声小于20n,输入失调电压小于5mv,差分输入输出电压范围大于2.5V 有test无layout,仅供学习专用,可提供对标lunwen和相关实验报告,有详细计算和讲解。 。 全差分运放电路是一种在电子系统中广泛使用的模拟集成电路,它具有高增益、高带宽、大信号输出范围等特点。在本次提供的文件中,详细介绍了全差分运放电路的多个关键模块及其设计指标。电路包含一个折叠共源共栅结构的运算放大器,这种结构能够提高运算放大器的输出阻抗和增益,同时减少电源电压对电路性能的影响。电路采用了开关电容共模反馈技术,它通过电容器的充放电过程来调整运放的共模输出电平,保持电路的稳定工作。此外,连续时间共模反馈电路能够提供连续的反馈,确保运放的共模抑制比达到要求。 Gainboost增益自举电路是另一种重要的模块,它通过外部控制信号提高运放的增益,尤其在高频条件下,对提高运放的性能起到了关键作用。密勒补偿调零技术用于调整运放的频率响应,确保在增益提高的同时,稳定性和相位裕度不受影响。偏执电路则是运放中不可或缺的一部分,用于提供稳定的电流或电压,保证运放的正常工作。二级结构的运放能够进一步提高增益,并且改善输出信号的线性度。 这些模块共同作用,使得全差分运放电路的增益可以达到140dB,带宽超过1GHz,相位裕度大于60度,等效输入噪声小于20纳伏,输入失调电压小于5毫伏,差分输入输出电压范围超过2.5V。这些性能指标表明,该电路非常适合用于对信号有高精度和高速度要求的应用场合。 文档中提到,本源文件没有布局信息,仅适用于学习和研究使用。提供者还提供了相关的论文和实验报告,以及对电路设计的详细计算和讲解,这为深入理解和学习全差分运放电路设计提供了充分的资源。用户可以借此机会深入研究全差分运放电路的设计原理和技术细节。 此外,文件列表中还包含了多种格式的文件,如Word文档、HTML网页、JPG图片和文本文件,这些文件从不同的角度展示了全差分运放电路的设计理念、技术分析和研究内容,对相关领域的研究人员和技术人员而言,这些材料具有重要的参考价值。 通过分析提供的文件信息和列表,可以得出全差分运放电路设计的以下几个关键知识点: 1. 全差分运放电路的应用背景和设计重要性。 2. 折叠共源共栅结构运放的设计原理和作用。 3. 开关电容共模反馈和连续时间共模反馈电路的实现方式和优势。 4. Gainboost增益自举电路在高频条件下的应用和效果。 5. 密勒补偿调零技术的作用及其对电路稳定性的影响。 6. 偏执电路在运放中的基本功能和设计要点。 7. 二级结构运放的优势及其对电路性能的提升。 8. 全差分运放电路的性能指标及其在设计中的考量。 9. 提供的学习资源和研究材料,包括论文、实验报告和技术分析文章。 10. 文件中提到的各个模块的设计和相互作用机制,以及最终电路的综合性能。 这些知识点共同构成了全差分运放电路设计的完整图景,为学习和应用这类电路提供了宝贵的理论和技术支持。
2025-11-20 10:01:22 1.3MB scss
1
放大器共模抑制比(Common-Mode Rejection Ratio,简称CMRR)是评估差分放大器性能的重要参数之一,它描述了放大器对于共模信号的抑制能力。在理想情况下,放大器应只放大两个输入端之间的差模信号,而完全忽略共模信号。但在实际应用中,放大器会同时放大差模和共模信号,共模抑制比即为差模增益与共模增益的比值。共模抑制比越高,表示放大器抗共模干扰的能力越强。 共模抑制比的测量通常比测量放大器的失调电压、偏置电流更为复杂。在放大器设计和测试过程中,工程师经常使用不同的电路和方法来测量CMRR。文中提到了四种测量共模抑制比的方法:直接定义测量法、匹配信号源法、电压测量法和匹配电阻法。每种方法都有其适用场景和潜在的不足。 直接定义测量法是通过测量差模增益和共模增益来计算CMRR,但由于电路中使用电感和电容组成的低通滤波器,这在CMOS放大器电路中常常使用高阻值电阻代替电感,可能会在反馈电阻上产生较大的直流偏移,从而影响测量结果。 匹配信号源法是利用两个信号源对放大器的同相和反相输入端进行激励,通过差模增益和共模增益的比值来确定CMRR。这种方法的缺点在于很难实现两个信号源幅值和相位的绝对匹配,从而导致测量结果无法准确反映放大器的真实性能。 电压测量法通过改变放大器供电电压的绝对值来模拟共模电压的变化,然后测量输出电压变化来计算CMRR。但是,这种方法忽略了一些其他因素的影响,如电源抑制比(Power Supply Rejection Ratio,PSRR),从而可能使结果失去其意义。 匹配电阻法需要使用高精度的电阻进行匹配,尤其在测量CMRR较高的放大器时,对电阻的精度要求更高,1ppm误差的电阻可能难以获得,这使得方法的可操作性受限。 文中提出了使用辅助运算放大器(辅助运放)结合电源法的测量方法,该方法不需要高精度的匹配电阻即可进行有效的CMRR测量。通过在电路中添加辅助放大器并配合开关控制,能够提供准确的共模电压,并通过测量开关切换前后的输出电压变化来计算CMRR。仿真结果表明,使用辅助运放-电源法测量的CMRR结果与数据手册中的典型值非常接近,验证了该方法的有效性。 在实际的放大器设计和测试中,正确理解和选择合适的测量方法对于准确评估放大器性能至关重要。共模抑制比是差分放大器设计中的一个关键指标,其测量结果直接影响到电路的性能评估和可靠性分析。通过对比不同测量方法的优缺点,可以更有效地进行放大器的性能测试,从而为电路设计和应用提供可靠的数据支持。
2025-08-07 09:46:09 559KB 共模抑制比
1
"基于Heric拓扑的逆变器离网并网仿真模型:支持非单位功率因数负载与功率因数调节,共模电流抑制能力突出,采用PR单环控制与SogiPLL锁相环技术,LCL滤波器,适用于Plecs 4.7.3及以上版本",#Heric拓扑并离网仿真模型(plecs) 逆变器拓扑为:heric拓扑。 仿真说明: 1.离网时支持非单位功率因数负载。 2.并网时支持功率因数调节。 3.具有共模电流抑制能力(共模电压稳定在Udc 2)。 此外,采用PR单环控制,具有sogipll锁相环,lcl滤波器。 注:(V0004) Plecs版本4.7.3及以上 ,Heric拓扑; 离网仿真; 并网仿真; 非单位功率因数负载; 功率因数调节; 共模电流抑制; 共模电压稳定; PR单环控制; SOGIPLL锁相环; LCL滤波器; Plecs版本4.7.3以上。,"Heric拓扑:离网并网仿真模型,支持非单位功率因数与共模电流抑制"
2025-07-16 11:42:25 714KB 数据仓库
1
调幅(AM)信号的包络线形状与调制信号一致。只要能检出调幅信号的包络线即能实现解调,这种方法又称包络检波。普通调幅(AM)信号通过精密全波整流电路进行全波整流,然后经低通滤波器取出低频成分,经过信号放大,从而获得解调信号。
2025-06-12 14:38:47 66KB 测控电路 放大电路
1
在电子工程领域,单端转差分转换是常见的信号处理技术,主要用于提高系统的动态范围和降低噪声干扰。本文将深入探讨标题所提及的"带可调输出共模的多功能、精密单端转差分电路提升系统动态范围"这一主题。 让我们了解几个基本概念。差分电路是一种电路设计,它利用两个信号之间的差值来传输或处理信息,这种设计能有效抑制共模噪声,即同时影响两个信号的噪声。单端转差分转换则是将单端信号转换为差分信号,以增强信号质量并降低对外部噪声的敏感性。 "可调输出共模"是指电路能够调整其输出信号的平均电平,这个特性在某些应用中非常重要,因为不同的系统可能需要不同的参考电压。共模电压是差分信号中两个信号的平均值,通过调整共模电压,我们可以优化信号的噪声性能,并适应不同的负载条件。 "多功能"和"精密"是描述该电路设计的两个关键特点。多功能意味着电路不仅可以用于基本的信号转换,还能适应多种应用场景,如数据采集、通信系统、测试设备等。精密则强调电路在实现转换时的高精度和低误差,这通常是通过采用高质量的组件、精确的增益控制和优秀的温度稳定性来实现的。 提升系统动态范围是电路设计的主要目标之一。动态范围是指系统可以识别的最小信号与最大信号之间的比率,一个更大的动态范围意味着系统能处理更宽范围的信号幅度,从而提高整体性能。在本案例中,通过使用精密的单端转差分电路并结合可调输出共模功能,可以有效地提高系统的动态范围,使得系统在高噪声环境下也能保持良好的信号质量和信噪比。 "系统"在这里指的是整个包含该电路的电子系统,可能包括放大器、滤波器、采样保持器等其他组成部分。优化这些组件与单端转差分电路的交互,能够进一步提升系统的整体性能。 "带可调输出共模的多功能、精密单端转差分电路提升系统动态范围"这一技术旨在提供一种适应性强、性能优良的信号处理解决方案。通过理解并运用这些知识点,电子工程师可以在设计高精度、低噪声的电子系统时,显著提高其性能和可靠性。提供的PDF文档很可能是详细阐述这一技术原理和应用实例的专业资料,对于相关领域的学习和研究极具价值。
2024-10-14 18:59:35 417KB 可调输出
1
共模电感的计算和材料选择,EMI设计的好就需要好的共模电感,本文详细介绍了共模电感的设计。
2024-04-25 21:02:41 1MB 共模电感的计算和材料选择
1
基于开关电容共模反馈理论分析、电子技术,开发板制作交流
2024-03-27 17:13:58 303KB
1