本文介绍了利用 C++ 和 OpenCV 对 YOLOv11-CLS 模型完成图像分类的具体方法,涵盖模型导入、数据预处理流程及推理操作,并提供了一份详尽的操作指南,其中包括数据增强、置信度调整等进阶应用技巧。本项目的目的是通过演示如何使用 C++ 和 OpenCV 构建一个高效的图像分类系统。 适合人群:有基本的 C++ 或机器学习背景的研究人员和技术工作者。 应用场景及目标:适用于需要高性能实时物体检测的各种应用环境中,例如无人车系统和安保摄像头等领域。使用者能够学习到模型选择、环境搭建以及优化技术的应用。 此外,为了改善模型表现和用户体验感,在今后的研发过程中还考虑集成更多的自定义功能选项。目前推荐用户严格按照文档提示来进行操作。
2025-05-07 16:54:11 41KB OpenCV 图像分类 模型部署
1
内容概要:本文介绍了一种改进的EfficientNet模型,主要增加了ContextAnchorAttention(CAA)模块。该模型首先定义了基础组件,如卷积层、批归一化、激活函数、Squeeze-and-Excitation(SE)模块以及倒残差结构(Inverted Residual)。CAA模块通过选择最具代表性的锚点来增强特征表示,具体步骤包括通道缩减、选择锚点、收集锚点特征、计算查询、键、值,并进行注意力机制的加权融合。EfficientNet的构建基于宽度和深度系数,通过调整每个阶段的卷积核大小、输入输出通道数、扩展比例、步长、是否使用SE模块等参数,实现了不同版本的EfficientNet。最后,模型还包括全局平均池化层和分类器。 适合人群:对深度学习有一定了解并希望深入研究图像分类模型的设计与实现的研究人员或工程师。 使用场景及目标:①理解EfficientNet架构及其改进版本的设计思路;②掌握如何通过引入新的注意力机制(如CAA)来提升模型性能;③学习如何使用PyTorch实现高效的神经网络。 阅读建议:由于本文涉及大量代码实现细节和技术背景知识,建议读者具备一定的深度学习理论基础和PyTorch编程经验。同时,在阅读过程中可以尝试复现代码,以便更好地理解各模块的功能和作用。
1
随机森林分类模型是机器学习领域中一种强大的分类算法,以其出色的预测性能和对高维数据的处理能力而受到青睐。该模型通过构建多个决策树并集成它们的预测结果,来提高整体的分类准确性和鲁棒性。 此资源提供了一个完整的Matlab代码实现,允许用户在Matlab环境中快速构建和使用随机森林分类器。代码涵盖了数据导入、预处理、模型训练、分类预测以及性能评估等关键步骤。此外,还包含了一个示例数据集,帮助用户理解如何应用该模型,并提供了详细的使用说明,指导用户如何调整模型参数以适应不同的分类任务。 资源适合机器学习领域的研究人员、数据科学家以及对机器学习算法感兴趣的学生。通过这个资源,用户不仅可以学习到随机森林算法的原理,还可以获得实际编程和应用该算法的经验。此外,该资源还有助于用户理解如何评估和优化分类模型,提高其在数据分析和模式识别项目中的技能。 需要注意的是,虽然随机森林是一个强大的工具,但它并不能保证在所有情况下都能提供完美的分类结果。用户在使用时应考虑数据的特性和分类问题的具体需求,合理选择和调整模型参数。同时,对于模型的使用应遵守相关的法律法规和数据使用协议。
2024-08-10 20:46:53 4.03MB matlab 机器学习 随机森林
1
【视频演示】 bilibili.com/video/BV1Se411v7oy/ 【博客地址】 blog.csdn.net/FL1623863129/article/details/135359963 【测试环境】 vs2019 net framework4.7.2 opencvsharp4.8.0
2024-06-14 14:47:51 241.85MB
全连接神经网络(DNN)分类预测,多特征输入模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-04-01 21:36:14 72KB 神经网络 dnn
1
这个项目是一个基于深度学习的图像分类器,旨在实现对玉米叶子的健康状况的准确识别和分类。数据集包含四种类别:blight(病斑)、common rust(锈病)、gray leaf spot(灰斑病)和healthy(健康状态)。通过对数据集进行预处理和增强,使用resnet模型进行特征提取和分类,实现对不同病害的玉米叶子图像的自动分类。在模型训练过程中,采用了交叉验证来避免过拟合,并使用一些优化技术如批量归一化和随机失活来提高模型的泛化能力和准确性。最终,通过对模型的评估和测试,得到了高精度和高可靠性的玉米叶子分类器,可以在农业生产中发挥重要作用。
2024-03-25 11:09:24 312.57MB 图像处理 深度学习 python
1
鲸鱼算法(WOA)优化BP神经网络分类预测,WOA-BP分类预测,多特征输入模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-02-29 17:16:29 75KB 神经网络
1
基于最小二乘支持向量机LSSVM分类预测,多特征输入模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-01-04 17:15:32 86KB 支持向量机
1
支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)。SVM使用铰链损失函数(hinge loss)计算经验风险(empirical risk)并在求解系统中加入了正则化项以优化结构风险(structural risk),是一个具有稀疏性和稳健性的分类器。SVM可以通过核方法(kernel method)进行非线性分类,是常见的核学习(kernel learning)方法之一。
2024-01-04 08:41:33 3KB matlab 支持向量机
1