实验7 Spark初级编程实践 一、实验目的 1. 掌握使用Spark访问本地文件和HDFS文件的方法 2. 掌握Spark应用程序的编写、编译和运行方法 二、实验平台 1. 操作系统:Ubuntu18.04(或Ubuntu16.04); 2. Spark版本:2.4.0; 3. Hadoop版本:3.1.3。 三、实验步骤(每个步骤下均需有运行截图) 实验前期准备: Spark是Apache软件基金会下的一个大数据处理框架,以其高效、易用和灵活性著称。在"大数据技术原理及应用课实验7:Spark初级编程实践"中,我们主要关注Spark的两个核心知识点:数据读取和Spark应用程序的开发流程。 Spark提供了一种简单的方式去访问不同的数据源,包括本地文件系统和Hadoop Distributed File System (HDFS)。在Spark Shell中,可以通过`textFile()`函数读取文件,例如读取本地文件"/home/hadoop/test.txt",只需一行命令`sc.textFile("/home/hadoop/test.txt")`。若要读取HDFS上的文件,需要指定HDFS的URL,如`sc.textFile("hdfs://namenode:port/user/hadoop/test.txt")`。在这里,`sc`是SparkContext的实例,是Spark与集群交互的入口。 Spark应用程序的编写通常使用Scala、Java、Python或R语言。在实验中,推荐使用Scala编写独立的应用程序,这需要对Spark的API有一定的了解。比如,统计文件行数可以使用`count()`方法,而创建Spark应用并打包成JAR文件则涉及到构建工具如sbt或Maven的使用。一旦应用编写完成,可以通过`spark-submit`命令提交到Spark集群执行。 接下来,实验中还涉及到了两个具体的编程任务: 1. 数据去重:这个任务要求合并两个文件A和B,并去除其中重复的内容。在Spark中,可以使用`reduceByKey`或`distinct`操作来实现。将两个文件的内容合并为一个DataFrame或RDD,然后通过`reduceByKey(_ + _)`对键值对进行合并,最后用`distinct()`去除重复项。 2. 求平均值:这个任务需要计算多个文件中所有学生的平均成绩。将所有包含成绩的文件加载到Spark,然后将数据转换为键值对形式,键是学生名字,值是成绩。接着,可以使用`groupByKey`和`mapValues`操作,`groupByKey`将相同名字的学生聚合在一起,`mapValues`用于计算这些学生的平均分,最后将结果写入新文件。 Spark在处理大数据时,其核心是弹性分布式数据集(RDD),RDD提供了容错性和并行计算的能力。此外,Spark还提供了DataFrame和Dataset API,它们提供了更高级别的抽象,便于数据处理和SQL查询。 在实验总结中提到,Spark的应用程序优化涉及数据分区、缓存和序列化等策略。数据分区可以提高并行度,缓存可以减少数据读取的开销,而选择合适的序列化方式能优化内存使用和传输效率。 优化和改进方面,可以考虑使用更高效的Join策略,如Broadcast Join来处理大型数据集,或者使用DataFrames和Datasets API来利用其编译时检查和优化。另外,还可以研究Spark的动态资源调度,以适应数据量的变化和集群资源的波动。 Spark作为大数据处理的重要工具,其编程实践涵盖了数据读取、分布式计算、数据操作和应用程序优化等多个方面,对理解和掌握大数据处理流程具有重要的实际意义。通过这样的实验,可以提升对Spark的理解和应用能力。
2025-06-28 15:28:49 3.54MB spark 编程语言
1
Spark 初级编程实践 Spark 是一个大数据处理的开源 cluster computing 框架,具有高效、灵活、可扩展等特点。本实验报告旨在通过 Spark 初级编程实践,掌握 Spark 的基本使用和编程方法。 一、安装 Hadoop 和 Spark 在本机 Windows 10 上安装 Oracle VM VirtualBox 虚拟机,安装 CentOS 7 操作系统,并配置 Hadoop 3.3 环境。由于 Hadoop 版本为 3.3,所以在官网选择支持 3.3 的 Spark 安装包,解压安装包到指定文件夹,配置 spark-env.sh 文件,启动 Spark 成功。 二、Spark 读取文件系统的数据 Spark 可以读取 Linux 系统本地文件和 HDFS 系统文件。在 spark-shell 中读取 Linux 系统本地文件“/home/hadoop/test.txt”,然后统计出文件的行数。在 spark-shell 中读取 HDFS 系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数。编写独立应用程序(使用 Scala 语言),读取 HDFS 系统文件“/user/hadoop/test.txt”(如果该文件不存在,请先创建),然后,统计出文件的行数。使用 sbt 工具将整个应用程序编译打包成 JAR 包,并将生成的 JAR 包通过 spark-submit 提交到 Spark 中运行命令。 三、编写独立应用程序实现数据去重 编写 Spark 独立应用程序,对两个输入文件 A 和 B 进行合并,并剔除其中重复的内容,得到一个新文件 C。使用 Scala 语言编写程序,并使用 sbt 工具将整个应用程序编译打包成 JAR 包,并将生成的 JAR 包通过 spark-submit 提交到 Spark 中运行命令。 四、编写独立应用程序实现求平均值问题 编写 Spark 独立应用程序,求出所有学生的平均成绩,并输出到一个新文件中。使用 Scala 语言编写程序,并使用 sbt 工具将整个应用程序编译打包成 JAR 包,并将生成的 JAR 包通过 spark-submit 提交到 Spark 中运行命令。 五、问题解决 在实验过程中,遇到了三个问题。问题一是运行 start-all 命令时 Spark 报错说缺少依赖,解决方法是下载安装包时选择正确的版本。问题二是在 etc/profile 中更改完环境后,Source 命令刷新文件仍然出现路径配置错误,解决方法是在同一个窗口 source 一下成功启动。问题三是在用 sbt 编译的过程中报错,解决方法是将编译的 sbt 文件配置改为启动 spark-shell 中现实的 Scala 版本号。 本实验报告通过对 Spark 的基本使用和编程方法的实践,掌握了 Spark 的基本使用和编程方法,并解决了实验过程中的问题。
2025-06-08 15:55:11 913KB spark 编程语言
1
一、实验目的 1. 通过实验掌握基本的MapReduce编程方法; 2. 掌握用MapReduce解决一些常见的数据处理问题,包括数据去重、数据排序和数据挖掘等。 二、实验平台 1. 操作系统:Linux(建议Ubuntu16.04或Ubuntu18.04) 2. Hadoop版本:3.1.3 三、实验步骤(每个步骤下均需有运行截图) (一)编程实现文件合并和去重操作 对于两个输入文件,即文件A和文件B,请编写MapReduce程序,对两个文件进行合并,并剔除其中重复的内容,得到一个新的输出文件C。下面是输入文件和输出文件的一个样例供参考。 ———————————————— 版权声明:本文为CSDN博主「Blossom i」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/weixin_60530224/article/details/135632280 **大数据技术原理及应用——MapReduce初级编程实践** MapReduce是一种分布式计算模型,由Google提出,主要用于处理和生成大规模数据集。在这个实验中,我们将学习如何利用MapReduce编程解决实际问题,包括数据去重、数据排序和信息挖掘。 **一、MapReduce编程基础** MapReduce的核心在于两个主要阶段:Map阶段和Reduce阶段。Map阶段将输入数据分解成键值对,然后并行处理这些对。Reduce阶段则将Map阶段的结果聚合,生成最终的输出结果。 **1. 文件合并与去重** 在Map阶段,我们读取输入文件A和B,对每一行数据进行处理,生成形如`(key, value)`的键值对,其中`key`是行内容,`value`可以是一个标记,表明该行来自于哪个文件。在Reduce阶段,我们检查`value`的集合,如果存在相同的`key`但`value`不同的情况,说明这是来自不同文件的重复数据,我们只需要保留一份即可。 **2. 数据排序** 针对多个输入文件的整数排序问题,Map阶段同样生成`(key, value)`对,这里`key`是待排序的整数,`value`是排序标识。Reduce阶段根据`key`进行排序,并输出排序后的结果,同时在输出文件中,将排序索引作为新的`key`,原整数作为`value`。 **二、信息挖掘** 对于给定的父子辈关系表,我们需要找出祖孙辈关系。Map阶段,我们将每一行的父子关系转换成`(child, parent)`和`(parent, child)`两对键值对。Reduce阶段,通过检查`child`是否出现在其他键值对的`parent`位置,来发现祖孙关系,输出`(grandchild, grandparent)`对。 **三、MapReduce优化与改进** 在实现上述功能时,可以考虑以下优化: - **分区策略**:根据输入数据的特性调整分区策略,使得相同`key`的数据尽可能在同一台机器上处理,减少网络传输。 - **Combiner函数**:在Reduce前,先在Map节点上进行局部聚合,减少网络传输的数据量。 - **缓存中间结果**:对频繁出现的`key`,可以在内存中缓存,提高效率。 - **负载均衡**:确保集群中的任务分配均匀,避免单个节点过载。 在面对大量数据时,优化MapReduce程序至关重要,它可以显著提升处理速度和资源利用率。通过不断的实践和优化,我们可以更好地驾驭MapReduce,解决更复杂的大数据处理问题。
2025-04-03 10:16:09 2.32MB mapreduce 编程语言
1
一、实验目的 1. 通过实验掌握基本的Flink编程方法。 2. 掌握用IntelliJ IDEA工具编写Flink程序的方法。 二、实验内容和要求 1. Ubuntu18.04(或Ubuntu16.04)。 2. IntelliJ IDEA。 3. Flink1.9.1。 三、实验步骤(每个步骤下均需有运行截图) 1.使用IntelliJ IDEA工具开发WordCount程序 在Linux系统中安装IntelliJ IDEA,然后使用IntelliJ IDEA工具开发WordCount程序,并打包成JAR文件,提交到Flink中运行。 在本次实验中,主要是学习掌握基本的Flink编程方法编写Flink程序的方法以及对大数据的基础编程技能进行巩固。并且还学习了Flink的基本原理和运行机制,还通过具体的代码实现,了解到Flink程序的编写步骤和注意事项。此外,还学会了如何使用IntelliJ IDEA工具进行Flink程序的编写和调试,加深了对开发工具的了解。
2024-06-01 16:36:55 4.26MB flink 编程语言
1
1、实验环境: 设备名称 LAPTOP-9KJS8HO6 处理器 Intel(R) Core(TM) i5-10300H CPU @ 2.50GHz 2.50 GHz 机带 RAM 16.0 GB (15.8 GB 可用) 主机操作系统 Windows 10 家庭中文版 虚拟机操作系统 ubuntukylin-16.04 Hadoop 版本 3.1.3 JDK 版本 1.8 Java IDE:Eclipse 系统类型 64 位操作系统, 基于 x64 的处理器 笔和触控 没有可用于此显示器的笔或触控输入 2、实验内容与完成情况: 1. 安装hadoop和spark。 将下载好的安装包解压至固定路径并安装 使用命令./bin/spark-shell启动spark 图2启动spark 2. Spark读取文件系统的数据 (1) 在spark-shell中读取Linux系统本地文件“/home/hadoop/test.txt”,然后统计出文件的行数; 图3 spark统计行数 (2) 在spark-shell中读取HDFS系统文件“/user/hadoop/test.txt”(
2022-07-15 19:05:43 1.9MB 大数据 spark hadoop
1
实验内容与完成情况: 1. 使用IntelliJ IDEA工具开发WordCount程序 在Linux操作系统中安装IntelliJ IDEA,然后使用IntelliJ IDEA工具开发WordCount程序,并打包成JAR包,提交到Flink中运行。 安装Flink并启动: 安装maven: 使用IntelliJ IDEA写java: 使用maven打包JAR包 运行JAR包结果: 2. 数据流词频统计 使用Linux操作系统自带的NC程序模拟生成数据流,不断产生单词并发送出去。编写Fink程序对NC程序发来的单词进行实时处理,计算词频,并输出词频统计结果。要求首先在IntelliJ IDEA中开发和调试程序,然后打包成JAR包部署到Flink中运行。 使用IntelliJ IDEA写java: 运行NC并输入数据: 运行JAR包:
2022-06-29 09:11:35 2.46MB 大数据实验报告 hadoop Flink 大数据
林子雨大数据原理与技术第三版实验5实验报告 大数据技术与原理实验报告 MapReduce 初级编程实践 姓名: 实验环境:  操作系统:Linux(建议Ubuntu16.04);  Hadoop版本:3.2.2; 实验内容与完成情况: (一)编程实现文件合并和去重操作 对于两个输入文件,即文件 A 和文件 B,请编写 MapReduce 程序,对两个文件进行合并, 并剔除其中重复的内容,得到一个新的输出文件 C。下面是输入文件和输出文件的一个样例 供参考。 输入文件 A 的样例如下:
2022-06-20 18:07:49 1.28MB 大数据 mapreduce Hadoop
适合: 小白 初学者 刚入社会想了解ROBOT 发那科机器人 初级编程 想了解发那科ROBOT的人士 全都是干货,要想成为工程师就必须吧基础打牢 资料领进门修行靠个人 这份发那科机器人初级编程您值得拥有
坐标系系统,零点标定,运动编程,逻辑编程,夹爪编程,子程序编程等等
2022-01-20 14:21:54 17.27MB kuka机器人
1