给出了一种利用TSMC 0.18μm CMOS工艺实现的2.5Gb/s跨阻前置放大器。此跨阻放大器的增益为66.3dBΩ,3dB带宽为2.18GHz,等效输入电流噪声为112.54nA。在标准的1.8V电源电压下,功耗为7.74mW。输入光功率为-10dBm时,PCML单端输出信号电压摆幅为165mVp-p。模拟结果表明该电路可以工作在2.5Gb/s速率上。
2025-05-12 00:55:57 612KB 工程技术 论文
1
基于标准CMOS 0.18 μm工艺,设计了一种带AGC功能的光接收机RGC输入前置放大器。该放大器采用电压并联负反馈结构;输入级采用RGC结构以拓展带宽,从而解决了宽带宽与高跨阻之间的矛盾;输出级接入单端转差分结构,使输出的信号能直接输入到后续的主放大器中;嵌入自动增益控制技术AGC,以解决输入动态范围与高跨阻、低噪声之间的矛盾。同时,选用SIMC 0.18 μm工艺库进行了模拟仿真。结果显示,当光接收机输入光功率为-10 dBm、电源电压为1.8 V、光检测器的寄生电容为0.5 pF时,此放大器具有良好的等效电流输入曲线和幅频特性。 【一种带AGC功能的RGC输入前置放大器设计】是一种专为光接收机设计的集成电路,采用0.18微米的标准CMOS工艺。该放大器的核心目标是解决宽带宽与高跨阻以及输入动态范围与低噪声之间的矛盾。通过引入自动增益控制(AGC)技术,它能够动态调整增益,确保在不同输入光功率条件下保持稳定的性能。 在电路设计上,该放大器采用了电压并联负反馈结构,这种结构有助于提高稳定性和线性度。输入级采用了RGC(Regulated Cascode,受控共源极)结构,这种结构可以有效地扩展放大器的带宽,同时解决宽带宽和高跨阻的矛盾。RGC结构以其高输出阻抗和宽输出电压范围而著称,而且由于其高速度和低噪声的特性,特别适合用作前置放大器。 输出级则采用了单端转差分结构,这一设计使得放大后的信号可以直接馈送到后续的主放大器,简化了系统连接,降低了信号损失。嵌入的AGC技术能够根据输入信号的强弱自动调节增益,从而确保整个系统的动态范围。 在性能参数分析方面,RGC电路的输入电阻可以通过电路的小信号分析来计算。光电二极管作为光信号到电信号的转换器,其输出电流经过晶体管M1放大,形成电压信号。晶体管M2和电阻R3在输入级提供局部反馈,有助于改善输入阻抗。通过适当的电路配置,例如图2中的低通滤波器(R7和C1),可以实现单端到差分的转换,同时消除输出偏移。 在实际模拟仿真中,利用SIMC 0.18微米工艺库,该放大器在1.8伏电源电压下表现出良好的性能。当光检测器的寄生电容为0.5皮法时,低频跨阻增益达到72.8 dBΩ,3dB带宽为3.06 GHz,满足了高速率(10 Gb/s)的需求。同时,噪声电流低至108.36 nA,表明该放大器具有较低的噪声性能。 这种带AGC功能的RGC输入前置放大器设计,结合了RGC结构的优势和AGC技术,能够在有限的电源电压下实现高速、低噪声的光信号放大,对于提高光纤通信系统的性能和稳定性具有重要意义。这样的设计对于减少我国对进口通信芯片的依赖,推动国内通信行业的发展也起到了积极的作用。
2025-05-12 00:51:05 306KB IC设计软件
1
利用低噪声前置运算放大器把光电倍增管的输出信号尽可能无噪声的放大。从运放的选择,多级放大电路的设计要点,放大电路的噪声估算,PCB板布局连线和屏蔽等方面,提出了实用化的带宽达10 MHz的电路设计形式,以及注意事项及其信号调理方法。仿真结果显示了所设计电路的信号放大情况,此电路设计形式可以很好的放大并处理光电倍增管的输出信号。
2024-11-07 20:22:22 544KB 工程技术 论文
1
音频前置放大器电路分析。
2024-02-25 15:36:33 27KB 前置放大器 电路分析
1
音频前置放大器电路图(一) 在本设计中,前置放大器的增益控制采用直流音量控制方式,其具体实现如图1所示。前置放大器是由全差分运放和电阻构成的反相比例放大器,其增益由反馈电阻与输人电阻的比值决定。外部输人的直流模拟控制信号Vc,经过增益控制模块(GainCon-troD转换成控制数据,此数据用来控制前置放大器的反馈电阻与输人电阻的比值,进而调节增益的变化。 运算放大器采用两级级联结构,如图2所示图。第一级采用PMOS输人的折叠式共源共栅放大器提供大增益,同时增加输人共模范围,减小闪烁噪声,折叠输人管的负载采用带源极反馈结构的电流源负载,增加输出阻抗,减小噪声。第二级采用共源放大器提供大摆幅。为保持闭环的稳定性,加人密勒补偿电容,同时,为了抵消右半平面零点的影响,在补偿电容的前馈通路中插人与补偿电容串联的调零电阻。在共模反馈电路的设计中,采用有电阻分配器和放大器的共模反馈结构。 音频前置放大器电路图(二) 拾音器的前置放大器电路图 音频前置放大器电路图(三) 如图所示。本音频信号放大器主要用于频带为300Hz~3400Hz范围内,它可广泛用于通讯机中的公务联络,
2024-02-25 15:33:42 440KB 前置放大器 硬件设计
系统通过采用高速差分运算放大器、程控衰减阵列模块、射频双向模拟开关等芯片相结合的方式, 实现了低阻50Ω 带宽1 GH z( - 3 dB) , 高阻1 MΩ带宽500 M ( - 3 dB ) 并实现了2 mV/ div~ 5 V/ div 衰减量程, 系统还实现了自动量程控制, 直流电平自动位移调零控制, 最大限度降低了整个系统的失真和漂移。
1
前置放大器在音频系统中的作用至关重要。本文首先讲解了在为家庭音响系统或PDA设计前置放大器时,工程师应如何恰当选取元件。随后,详尽分析了噪声的来源,为设计低噪声前置放大器提供了指导方针。最后,以PDA麦克风的前置放大器为例,列举了设计步骤及相关注意事项。
2023-04-09 17:03:14 181KB 放大器
1
近年来,随着社会信息化程度不断提高,信息交换量呈爆炸性增长,光纤通信干线系统以其高速、大容量的优点被广泛应用于电信网、计算机网络。2.5 Gb/s超高速光纤通信系统已经投入使用。作为光纤通信系统中光接收机的关键部分,前置放大器的性能在很大程度上决定了整个光接收机的性能。   过去,对于高速的集成电路,多采用GaAs工艺来实现。但是随着深亚微米CMOS工艺的不断发展,栅长不断减小,现在0.35μm CMOS管的截止频率已经达到13.5 GHz,可以实现高速的集成电路。本文采用台湾TSMC0.35μmCMOS工艺实现了用于光纤传输系统STM- 16 (2.5Gb/s)速率级的前置放大器。  
1
采用UMC 0.13-μm CMOS工艺,设计了一种应用于SDH系统STM-64(10Gb/s)速率级的低电压供电光接收机前置放大器。采用1.2V低电压供电和三级共源放大结构,跨阻中频增益为57.5dBΩ,-3dB带宽为10.1GHz,总的等效输入噪声电流为1.47μA,相位裕度为73.7°,可稳定工作在10Gb/s速率。芯片面积为0.54mm×0.74mm。
1
前置放大器的电路设计图前置放大器的电路设计图信号调理电路采用±5 V电源供电,功耗仅为40 mA,适合便携式高速、高分辨率光强度应用,如脉搏血氧仪。信号调理电路
1