基于萤火虫优化的加权 K-means 算法
2021-12-09 09:40:17 918KB 研究论文
1
针对传统K-means算法易受初始聚类中心和异常数据的影响等缺陷,利用萤火虫优化算法全局搜索能力强、收敛速度快的优势,对K-means算法的初始聚类中心进行优化,并通过引用一种加权的欧氏距离,减少异常数据等不确定因素带来的不良影响,提出了一种基于萤火虫优化的加权K-means算法。该算法在提升聚类性能的同时,有效增强了算法的收敛速度。在实验阶段,通过UCI数据集中的几组数据对该算法进行了聚类实验及有效性测试,实验结果充分表明了该算法的有效性及优越性。
2021-11-15 15:38:43 1.72MB 加权K-means 聚类 萤火虫算法
1
电影作为典型的短周期、体验型产品,其票房收益受众多因素的共同影响,因此对其票房进行预测较为困难.本文主要构建了一种基于加权K-均值以及局部BP神经网络(BPNN)的票房预测模型对目前的票房预测模型存在的不足进行改进,从而提高票房预测的精度:(1)构建基于随机森林的影响因素影响力测量模型,并以此为依据对票房影响因素进行筛选,以此来简化后续预测模型的输入;(2)考虑到不同影响因素对票房的影响力不同的现实情况,为了解决以往研究中对影响因素权重平均分配的问题,本文构建了基于加权K-均值和局部BP神经网络的票房预测模型,以因素影响力为依据对样本数据进行加权的K-均值聚类,并基于子样本构建局部BP神经网络模型进行票房预测.实验证明,本文所构建的模型平均绝对百分比误差(MAPE)为8.49%,低于对比实验的10.39%,可以看出本文构建的基于加权K-均值以及局部BP神经网络的票房预测模型的预测结果要优于对比模型的预测结果.
2021-09-28 13:00:14 1.44MB 电影票房 预测 加权K-均值 BP神经网络
1