【数据库实验四】是针对计算机科学与技术专业学生进行的一项重要教学实践活动,旨在深化学生对数据库理论的理解,并通过实际操作提升其在数据库设计、管理、查询及接口应用方面的能力。这个实验通常会在大学二年级或三年级的数据库课程中进行,以配合理论教学,帮助学生将所学知识付诸实践。 在实验四中,学生们会接触到以下几个核心知识点: 1. **SQL语言**:SQL(Structured Query Language)是用于管理关系数据库的标准语言。学生们需要掌握如何使用SQL进行数据的增、删、改、查操作,以及创建和修改表结构、索引等数据库对象。 2. **数据库接口**:实验的核心部分是数据库接口,这通常涉及到编程语言如Java或Python与数据库的交互。学生需要学习如何使用特定的API(如JDBC或Python的psycopg2)来连接数据库,执行SQL语句,并处理结果。 3. **数据库连接**:实验中,学生将学习如何建立和管理数据库连接,包括连接参数的设置(如URL、用户名、密码),以及关闭连接以避免资源浪费。 4. **事务处理**:事务是数据库操作的基本单位,确保数据的一致性和完整性。学生需要了解事务的ACID特性(原子性、一致性、隔离性和持久性),并能编写代码来处理事务。 5. **错误处理和异常捕获**:在与数据库交互时,可能会遇到各种错误。学生需要学会如何正确地捕获和处理这些异常,确保程序的健壮性。 6. **性能优化**:通过实验,学生会学习到如何通过合理设计查询语句、使用索引、批量操作等方式提升数据库的运行效率。 7. **数据库设计**:虽然可能不是本次实验的重点,但理解ER模型(实体-关系模型)和范式理论(第一范式、第二范式、第三范式等)对于数据库设计至关重要,这些基础理论会在实验中有所体现。 在【实验四 刘天宝 胡春月】这个文件列表中,可能包含的是两位同学完成实验报告或者代码的文档。通过这些文档,可以进一步分析他们的实验过程,学习他们的实现方法,以及遇到问题时的解决策略。 数据库实验四是一个全面锻炼学生数据库应用能力的过程,涵盖了从基础的SQL语法到复杂的数据库接口编程等多个方面,是理论与实践结合的重要环节。通过这样的实验,学生不仅能够巩固课堂上的理论知识,还能提升实际编程技能,为未来从事相关工作打下坚实基础。
2025-12-17 22:04:04 1.83MB 数据库实验四
1
微波仿真实验是通信工程专业的重要实践活动,旨在通过仿真实验理解微波技术的理论知识,并掌握实际应用技能。本报告以北邮通信工程专业的微带分支线匹配器实验为例,详细介绍了微波仿真实验的流程和知识点。 实验一涉及微带分支线匹配器,其目标是熟悉阻抗匹配的原理,理解微带线的工作原理及其在实际应用中的重要性,并掌握通过Smith图解法设计微带线匹配网络。在试验原理部分,详细阐述了随着工作频率的提高,寄生参数的影响增大,因此需要利用分布参数元件替代分立元件,实现阻抗匹配。试验内容中,给出了具体的输入阻抗、负载阻抗、特性阻抗和介质基片的参数,要求设计微带线单支节和双支节匹配网络,并分析在不同频率下的匹配效果。 在试验环节部分,详细介绍了如何使用软件建立新项目,确定项目频率,将归一化输入阻抗和负载阻抗标在Smith圆图上,计算并确定微带线的物理长度和宽度。在原理图设计中,需要注意介质基片的相对介电常数、厚度等参数,并对原理图进行微调以得到最佳匹配效果。 实验二中,主要目的是掌握微带多节变阻器的设计方法,并利用仿真软件进行设计和优化。报告中提到了变阻器的种类和特性,阐述了通过多节阻抗变换器可以获得较宽频带的重要性,并提到了设计多节变阻器时常用的综合设计法,例如最大平坦度和契比雪夫多项式。 整个实验报告不仅详细记录了实验流程和操作,还包括了对实验结果的分析和总结。通过实际的仿真设计,学生能够将理论知识与实践相结合,深入理解微带线的匹配原理和设计方法,为将来在微波通信领域的深入研究打下坚实的基础。 本报告的内容不仅对于通信工程专业的学生具有重要的学习价值,也为相关领域的研究者提供了宝贵的参考资料。通过详细的操作步骤和原理分析,能够帮助读者更好地掌握微波仿真实验的设计与应用,提高微波电路设计的实际操作能力。实验中的问题解决过程,如微带线物理尺寸的计算和软件仿真优化等,都是工程实践中的重要技能,对于提高工程师在实际工作中的问题解决能力和设计效率具有显著的作用。
2025-12-07 12:43:50 2.44MB
1
在当今信息化时代,通信工程作为技术进步的重要推动力,成为了众多高校教育的重点。北京邮电大学作为一所专业性的高等学府,在通信领域有着深厚的教学与研究底蕴。本次实验报告以“2023年北邮通信工程场强仪实验报告”为题,涉及了《电磁场试验》课程中关于校园内无线信号场强特性研究的详细内容。报告内容不仅包括了实验目的、原理、设备、内容、环节以及结论和心得体会,而且还着重探讨了无线信号在实际校园环境中的传播特性。 实验原理部分,报告详细阐述了无线信号传播中的大尺度途径损耗、阴影衰落和建筑物的穿透损耗等关键因素。这些因素共同作用于无线信号,在不同环境下对信号强度造成影响。其中大尺度途径损耗反映了信号在自由空间传播过程中由于距离增大而引起的衰减。阴影衰落描述了由于地形、建筑物等障碍物遮挡造成的信号强度随机变化现象。而建筑物穿透损耗则关注了无线信号穿越墙体等障碍物时所遭受的衰减。了解这些原理对于在实际环境中设计无线通信网络,提高通信质量有着重要的意义。 报告还介绍了用于测量无线信号场强的专业设备——场强仪,以及其在实验中的应用。场强仪是评估无线网络覆盖质量的重要工具,它能测量无线信号的强度并提供可靠的数据,为后续的数据处理和分析提供了基础。 在实验内容和环节方面,报告涵盖了选择测量地点和频率、进行实际测量、数据录入、处理与分析的全过程。通过对校园内不同地点无线信号强度的测量,能够直观反映出电磁场的分布情况,并结合相应的数据分析,可以对实验结果进行科学解释。数据处理和分析是整个实验过程的关键,它通过数学模型和计算方法,将原始测量数据转化为具有实际意义的信息,帮助理解无线信号场强与环境因素之间的关系。 报告的最后部分,作者对于整个实验过程进行了总结,并分享了个人的心得体会。通过这一环节,不仅能检验学生对于课程知识的掌握程度,还有助于培养其独立思考和实际操作的能力,对于学生综合能力的提升具有积极影响。 实验报告不仅仅是一份简单的记录,它更是通信工程教育和研究的缩影。通过对无线信号场强特性的研究,学生能够将理论知识与实践相结合,加深对通信原理的理解,并为未来从事相关领域的工作打下坚实的基础。
2025-12-01 13:09:18 1.84MB
1
嵌入式系统实验—基于STM32F4的七段数字显示 本实验是基于北京邮电大学信通院大三计算机原理与应用课程的实验一提高部分,旨在展示使用STM32F4单片机实现七段数字显示的实验过程。 知识点一:STM32F4单片机的GPIO配置 在实验中,我们使用STM32F4单片机的GPIO口来控制七段数字显示器。本实验中,我们使用了GPIOF口,定义了SMG_RCC_GPIO和SMG_GPIO两个宏分别表示GPIOF口的时钟使能和GPIOF口本身。然后,我们使用GPIO_InitTypeDef结构体来配置GPIO口的工作模式、输出类型和速度。 知识点二:七段数字显示器的控制 在实验中,我们使用HC595 shift register来控制七段数字显示器。我们定义了HC595_SI、HC595_RCK和HC595_SCK三个宏分别表示HC595 shift register的数据输入、时钟信号和 latch信号。然后,我们使用HC595_Send函数将数字数据发送到HC595 shift register,并使用HC595_Lauch函数来触发 latch信号。 知识点三:数字显示的实现 在实验中,我们使用SMG_Display函数将数字显示在七段数字显示器上。我们首先将数字分离成单个数字,然后使用HC138_A、HC138_B、HC138_C和HC138_D四个宏分别表示七段数字显示器的四个段码。我们使用SMG_ShowStudentID函数将学生的学号显示在七段数字显示器上。 知识点四:延迟函数的实现 在实验中,我们使用SMG_Delay函数来实现延迟功能。本函数使用循环来实现延迟,循环次数可以根据需要进行调整。 知识点五:实验结果 最终,我们可以使用SMG_ShowStudentID函数将学生的学号显示在七段数字显示器上,并且可以调整延迟时间来控制显示速度。 本实验展示了使用STM32F4单片机实现七段数字显示的实验过程,涵盖了GPIO配置、七段数字显示器控制、数字显示实现和延迟函数实现等多个知识点。
2025-11-26 17:28:24 13KB 课程资源
1
在2023年北京邮电大学的通信原理实验报告中,重点关注了双边带抑制载波调幅(DSB-SC AM)的相关知识和实验操作。DSB-SC AM作为一种常见的通信调制方式,其核心在于通过调制过程移除了载波分量,保留了两个边带,从而节约了传输功率,并且理论上能够实现更高的频谱利用率。实验报告中详细阐述了DSB-SC AM信号的产生、波形特点、频谱特点,以及相干解调的原理和实施措施。 实验报告首先介绍了DSB-SC AM信号的时域和频域表现形式。时域中的DSB信号表达式为s(t)=m(t)coswt,频域表达式为1/2[M(w-wc)+M(w+wc)]。在此基础上,实验报告进一步说明了DSB-SC AM信号的产生原理和相干解调原理,即通过模拟基带信号与正弦载波相乘得到DSB-SC AM信号,并指出DSB-SC AM信号的解调必须采用相干解调方式。 在试验环节中,通过模拟音频信号和载频信号,使用乘法器产生DSB-SC AM信号,并通过示波器观察信号波形及其频谱特点。另外,为了能够在接收端恢复载波,实验中采取在发送端加导频的方法,并在接收端使用锁相环来提取载波。锁相环能够通过锁相机制跟踪导频信号,实现载波的提取。实验报告详细描述了锁相环的工作原理和调试步骤,以及如何利用低通滤波器(LPF)和90度移相器进行相干解调,最终获取模拟基带信号。 为了深入理解DSB-SC AM信号的特点,实验报告对VCO(压控振荡器)的压控灵敏度进行测量。VCO是锁相环中实现信号频率变化的关键元件,压控灵敏度的测量可以确定其频率调整的灵敏程度,这对于锁相环的调试至关重要。 整个实验过程中,详细记录了实验步骤和结果,包括DSB-SC AM信号的产生、加导频信号、锁相环的调试和载波的提取,以及最终相干解调的实现。实验报告强调了理论与实践相结合的重要性,通过实验操作加深了对DSB-SC AM调制解调原理的理解。 此外,报告中还提及了DSB-SC AM信号相干解调过程中的一些关键点,比如相位翻转与调制信号波形的关系,以及如何通过低通滤波器滤除四倍载频分量,通过隔直流电路滤除直流分量,最终获取纯净的模拟基带信号。 通过以上知识点,可以看出实验报告围绕DSB-SC AM这一通信原理的实验展开,涉及到信号的产生、调制、解调和信号恢复等多个环节。实验不仅增强了学生对通信原理的理解,而且提升了实际操作能力和问题解决能力。
2025-11-15 14:57:08 6.49MB
1
北邮 通信原理 第三版 课后习题 上下册 考试、作业必备。很多考试原题都是习题的哦!
2025-10-24 21:16:37 1.86MB 通信原理 课后习题
1
内容概要:本文详细介绍了基于VHDL和Arduino实现的一个智能水位监测与控制系统,主要功能涵盖水位感知和控制水泵自动排水两大部分。系统根据水位传感器采集数据,通过ADC(模拟到数字转换)模块处理信号后将其分类显示(正常-谨慎-危险)。系统利用LED数码管、点阵显示器、以及LMD显示屏直观展示水位,采用蜂鸣器预警,且支持Wi-Fi远程控制。具体实施过程中,通过多个子程序模块(如:ADC采集模块、分频器模块、状态控制模块、显示模块、WiFi模块等),解决了实际操作过程中的一系列问题,比如传感器精度限制、VHDL浮点运算不足等问题。项目最终通过ESP8266连接手机电控抽水,并通过手机Blinker显示和反馈水位。文章还包括详尽的功能介绍和系统资源分配,并提出若干优化建议以提高性能和用户体验。 适合人群:电子电路及嵌入式系统的工程专业大学生、具有一定编程和电路基础的研究人员和开发者。 使用场景及目标:此设计方案适用于高校实验室的自动化控制系统课程作业或科研项目,目标是构建一个能够精准测量水位并在特定情况下进行自动或手动控制排水的小型自动化设备。通过该项目,读者可以深入理解和实践数字电路与网络编程相结合的应用。 其他说明:文中提供了丰富的故障排除经验和系统改进意见,为类似项目的后续开发提供了有价值的参考资料。
2025-06-03 23:24:08 20.23MB VHDL Aduino WiFi通信 LCD显示
1
共射放大电路的频率特性分析是电子电路实验中的一个重要内容,主要目的是研究放大电路在不同频率信号输入下的响应特性。共射放大电路是基本的晶体管放大电路,其中频率特性主要体现在中频增益、上限截频和下限截频三个方面。中频增益指的是在中频范围内放大电路的增益大小,上限截频是放大电路频率响应的上限截止频率,而下限截频则是下限截止频率。在高频和低频端,由于放大电路内部电容的作用,增益会下降,形成频率特性曲线。 在实验中,通过使用不同的电容值(如100pF和0.01μF)观察其对电路频率特性的影响。电容在电路中起到隔直通交的作用,能够影响电路的截止频率。电容值越大,其对应的上限截频就越低,通频带越窄。这是因为电容值增大,对交流信号的容抗变小,信号更容易通过,从而使得电路的响应频率下降。 深负反馈对放大电路的影响也是本实验的一个重要内容。在共射放大电路中,通过改变发射极电阻的位置,可以改变电路的负反馈深度,进而影响电路的中频增益和通频带宽度。负反馈会降低放大电路的增益,同时能够改善电路的频率响应特性,即拓宽电路的通频带,提高电路的稳定性。实验结果表明,采用深负反馈后,中频增益减小,但上限截频和下限截频均得到改善,说明负反馈能够有效提高放大电路的频率响应范围。 在实验报告中,通常需要给出仿真和实际测试的波特图,并对两者进行对比分析。波特图是一种用于展示电路频率响应特性的图形工具,能够直观地表示电路增益随频率变化的情况。实验中,需要对仿真和测试结果进行标定,包括中频增益、上限截频和下限截频,并分析两者之间的差异。通常情况下,仿真和测试结果在中频增益和下限截频方面差异不大,但在上限截频方面会有较大差异,这是由于实验中的寄生参数和非理想条件所致。 此外,本实验还要求对实验设备及器件有所了解,包括笔记本电脑、AD2口袋仪器、电容、电阻、面包板、晶体管等。实验中对这些设备的正确使用和理解,是确保实验准确性和效率的关键。 本实验不仅加深了对共射放大电路频率特性的认识,而且通过仿真和测试的对比,以及负反馈对电路性能影响的分析,让学生能够更好地理解放大电路设计和优化的原理。通过实验的学习,学生能够掌握波特图的测试、仿真方法,深入理解负反馈对放大电路增益和频率响应的影响,提高电子电路设计和分析的实际操作能力。
2025-05-25 10:11:34 4.69MB
1
生产者-消费者问题是操作系统中的一个经典并发问题,它涉及到多线程的同步和资源管理。在这个问题中,有两个主要的角色:生产者和消费者,它们共享一个有限大小的缓冲区。生产者负责生成数据并放入缓冲区,而消费者则从缓冲区取出数据进行消费。问题的关键在于如何保证生产者不会在缓冲区满时继续生产,以及消费者不会在缓冲区空时尝试消费。 在实现生产者-消费者问题时,通常会用到以下几种同步机制: 1. **互斥锁(Mutex)**:用于保护临界区,确保同一时间只有一个线程可以访问缓冲区。在本实验中,作者使用Pthread库创建线程,并应用互斥锁来防止生产者和消费者同时操作缓冲区,从而避免数据竞争。 2. **条件变量(Condition Variables)**:配合互斥锁使用,允许线程在特定条件不满足时挂起等待,直到其他线程改变条件并唤醒它们。例如,当缓冲区满时,生产者可以被条件变量阻塞,直到消费者消费了缓冲区中的数据;反之,当缓冲区空时,消费者也会被阻塞,等待生产者填充数据。 3. **信号量(Semaphores)**:可以用来计数和同步,这里可以使用二进制信号量(互斥锁的一种抽象)或计数信号量。在实验中,虽然作者没有明确提到信号量,但它在解决这个问题时是常见的工具,可以用来限制缓冲区的占用数量,防止超过其容量。 实验环境为虚拟机上的Ubuntu 16.04系统,实验过程中,生产者和消费者线程的交互符合预期。初期,生产者生产,消费者消费交替进行。然而,随着生产者的随机快速生产,缓冲区可能在短时间内填满,这时生产者会遇到“failure insert”的情况,无法再将数据放入缓冲区。这恰恰验证了同步机制的有效性,因为生产者被阻止在缓冲区满时继续生产。同样,当缓冲区为空时,消费者会进入等待状态,等待生产者生产新的数据,这也符合设计。 实验过程中,作者遇到了关于`clock()`函数使用的问题,导致了一些bug。`clock()`是C语言中的一个函数,用于获取程序运行的时间,可能在设置超时或者同步等待时用到。通过查阅相关资料,作者解决了这些问题,这表明实验不仅提升了对同步问题的处理能力,还加强了对操作系统原理的理解。 总结来说,生产者-消费者问题的解决是一个很好的实践,它涉及到线程同步、资源管理和错误处理等多方面的知识。通过这样的实验,不仅可以深入理解多线程编程,还能提高解决实际并发问题的能力。
1
在本实验报告中,我们将深入探讨“北邮数据结构编程作业”的核心内容,涉及双链表、通讯录的实现、稀疏矩阵以及哈夫曼编码器等重要数据结构与算法。这些主题对于理解和掌握计算机科学中的基础理论以及实际编程技能至关重要。 双链表是一种线性数据结构,每个节点包含数据元素以及指向前后节点的指针。在双链表中,插入、删除操作通常比单链表更为便捷,因为可以从两个方向遍历链表。实验可能涵盖了创建、遍历、插入和删除节点的基本操作,以及更复杂的功能,如反转链表或查找特定元素。 接下来是通讯录的实现,这通常涉及到键值对的存储,如姓名与电话号码。通讯录可以使用多种数据结构实现,例如哈希表或二叉搜索树。哈希表提供快速的查找、插入和删除操作,而二叉搜索树则保证了数据的有序性。在这个实验中,学生可能需要设计一个高效的查询接口,支持按姓名或其他属性搜索联系人。 稀疏矩阵是处理大量零元素的矩阵时的一种优化数据结构。当矩阵中的非零元素远少于总元素数量时,使用二维数组存储所有元素就显得低效。稀疏矩阵通常用三元组(行号,列号,值)表示,只存储非零元素,大大节省了空间。实验可能包括实现稀疏矩阵的增删改查操作,以及转换为和从常规矩阵中提取稀疏矩阵的函数。 哈夫曼编码是一种高效的数据压缩方法,基于频率的二进制前缀编码。通过构建哈夫曼树,频繁出现的字符将获得较短的编码,而不常见的字符则有较长的编码。实验可能要求学生编写程序,根据字符出现频率生成哈夫曼树,然后构建对应的编码,并实现解码功能。理解哈夫曼编码不仅可以提高数据传输效率,也是理解其他编码和压缩算法的基础。 总结起来,这份“北邮数据结构编程作业实验报告”涵盖了数据结构与算法的基础知识,旨在提升学生的编程实践能力和问题解决能力。通过这三个实验,学生将深化对双链表操作、高效数据存储(如通讯录实现)、空间优化(稀疏矩阵)以及数据压缩(哈夫曼编码)的理解,这些是计算机科学和软件工程领域的核心技能。在实际应用中,这些知识对于开发高效、可靠和资源节约的软件系统至关重要。
2025-04-25 23:05:34 77KB 数据结构 文档资料
1