本文主要研究了带有时变时滞系统的稳定性分析问题。在现代控制系统中,时滞问题广泛存在,它们可能是由于信号传输延迟、物料处理时间、信息处理等多方面因素造成的。系统中的时滞现象,尤其是时变时滞,会对系统的性能产生不利影响,甚至可能导致系统不稳定。因此,对系统进行稳定性分析,并研究相应的稳定性条件,对于确保系统可靠运行具有重要的理论意义和实际应用价值。 文章中提到了Lyapunov-Krasovskii泛函方法,这是一种被广泛应用于分析时滞系统稳定性的数学工具。Lyapunov理论提供了一套系统稳定性分析的框架,而Krasovskii对该理论进行了扩展,使之能够适用于具有时滞的系统。该方法的关键思想是构造一个适当的Lyapunov-Krasovskii泛函,该泛函能够捕捉系统状态的时间变化以及时滞因素的影响。 文章中还提出了一个具体的Lyapunov-Krasovskii泛函表达式,并通过求解该泛函的时间导数来分析系统稳定性的充要条件。该泛函形式涉及积分项和系统状态变量的乘积,反映了时滞对系统状态的影响。通过数学推导,作者得到了一组不等式,这些不等式刻画了系统在时变时滞情况下的稳定性边界。 文章的另一部分强调了矩阵不等式方法在时滞系统稳定性分析中的应用。矩阵不等式是现代控制理论中的一个重要工具,尤其是在处理不确定性、参数变化和时滞等问题时。在本文中,矩阵不等式用于确定Lyapunov-Krasovskii泛函的参数,进而得出系统的稳定性条件。文中涉及到的矩阵形式包括矩阵的对称性、矩阵的正定性以及矩阵的线性矩阵不等式(LMIs)等。 此外,文章中还讨论了时变时滞系统稳定性的判定方法。这些方法不仅包括构造Lyapunov-Krasovskii泛函,还包括通过解矩阵不等式来确定稳定性的边界条件。这些条件通常以数学的形式给出,如系统矩阵和时滞参数满足某些特定的限制条件。 在给定的部分内容中,可以看出文章使用了大量的符号和数学表达式来构建稳定性分析的数学模型,包括系统矩阵、时滞参数、状态变量以及Lyapunov-Krasovskii泛函中的各项。这些数学模型和分析过程展示了时滞系统稳定性分析的复杂性和严谨性。尽管文中的某些数学表达式由于OCR识别错误可能不够完整或存在误差,但从给出的片段中,我们能够了解到文章的核心内容是围绕着如何利用Lyapunov-Krasovskii泛函和矩阵不等式方法来分析和判定带有时变时滞系统的稳定性问题。 本文所涉及的知识点包括系统稳定性的理论基础、Lyapunov-Krasovskii泛函的构造及其在时滞系统中的应用、矩阵不等式在稳定性分析中的重要性以及时变时滞系统稳定性判定的具体方法。这些知识点在控制理论及工程领域中具有重要的地位和应用价值。
2025-06-16 19:39:28 380KB 研究论文
1
本文详细探讨了利用Lyapunov-Krasovskii泛函对时变时滞神经网络稳定性进行分析的方法。介绍了Lyapunov-Krasovskii泛函在稳定性分析中的重要性,然后通过对时变时滞神经网络的数学模型进行深入分析,构建了对应的Lyapunov-Krasovskii泛函,并引入相应的时滞依赖项以确保对时变时滞的充分考虑。 文章深入剖析了时变时滞神经网络的动态特性,并着重讨论了网络参数以及时变时滞对系统稳定性的影响。通过建立适当的数学条件,作者提出了一种新的稳定性判定准则,该准则在保证系统稳定性的同时,还提供了对系统性能的具体描述。 此外,为了使分析过程更加严谨和系统,本文还提出了一系列定理和引理。通过这些理论工具,可以更精确地分析系统的稳定边界,并在定理中给出的条件下,保证神经网络系统的全局指数稳定性。 文章进一步通过举例和仿真来验证所提出的稳定性分析方法的有效性,展示该方法在不同的时变时滞和网络参数下的稳定性能,证实了所提方法在设计和分析时变时滞神经网络中的实用性和可行性。 文章总结了Lyapunov-Krasovskii泛函在时变时滞神经网络稳定性分析中的作用,并对未来可能的研究方向进行了展望,比如将该方法应用于更复杂的动态系统中,以及如何进一步提升系统的稳定性和鲁棒性。
2025-06-16 19:36:39 2KB
1
人工智能-非线性时变时滞系统的神经网络自适应鲁棒控制.pdf
人工智能-带有时变时滞的忆阻神经网络的同步分析.pdf
人工智能-带有时变时滞神经网络的性态分析.pdf
利用状态依赖控制策略对切换信号进行设计, 使得一类参数不确定时滞非线性切换系统指数稳定且具有一定的H∞ 抗干扰性能. 利用Lyapunov-Krasovskii (LK) 函数方法, 以线性矩阵不等式组的方式, 给出了稳定切换律存在的充分条件, 并且该系统是指数稳定的. 通过引入自由矩阵并结合积分不等式技巧, 得到了保守性较低的稳定性条件. 仿真算例表明了所提出方法的有效性和较低的保守性.
1
具有变时滞的二阶微分系统,matlab数值仿真
2021-12-06 21:17:29 1KB 变时滞 时滞 微分方程 时滞系统
具有泄漏时滞和混合加性时变时滞复数神经网络的状态估计.pdf
对于一类具有未知时变时滞和虚拟控制系数的不确定严格反馈非线性系统, 基于后推设计提出一种自适应神经网络控制方案. 选取适当的Lyapunov-Krasovskii 泛函补偿未知时变时滞不确定项. 通过构造连续的待逼近函数来解决利用神经网络对未知非线性函数进行逼近时出现的奇异问题. 通过引入一个新的中间变量, 保证了虚拟控制求导的正确性. 仿真算例表明, 所设计的控制器能保证闭环系统所有信号是半全局一致终结有界的, 且跟踪误差收敛到零的一个邻域内.
1
基于遗传算法的时变时滞参数辨识
2021-06-22 09:02:06 243KB 算法
1