HFSS(High Frequency Structure Simulator)是一款广泛应用于电磁波模拟与天线设计的高级软件,尤其在微波和射频工程领域具有很高的声誉。本压缩包文件"HFSS-变量和Optimetrics模块.zip"主要围绕HFSS中的变量管理和优化设计工具——Optimetrics模块进行深入探讨,通过两个AVI视频教程“8-2.avi”和“8-1.avi”提供实践操作指导。 让我们详细了解一下HFSS中的变量管理。在HFSS中,变量是用于存储和传递设计参数的关键元素。用户可以定义全局变量、局部变量以及参数化变量,以便在模型设计、求解设置或后处理步骤中灵活调整参数。全局变量在整个项目中有效,而局部变量只在特定的组件或操作范围内有效。参数化变量则允许用户将设计参数与几何特征关联,使得参数改变时,几何形状会自动调整。这大大提高了设计的可重用性和灵活性,尤其在进行多参数优化时更为便捷。 接下来,我们关注Optimetrics模块。Optimetrics是HFSS内置的一个强大优化工具,用于寻找设计的最佳性能。它可以与变量系统紧密配合,通过设定目标函数和约束条件,自动调整设计参数以最大化或最小化目标值。Optimetrics支持多种优化算法,如梯度法、直接搜索法、遗传算法等,以适应不同的问题类型和求解复杂度。在实际操作中,用户需要定义优化目标,如最大化增益、减小反射损耗等,同时设置约束条件,如尺寸限制、功率限制等。然后,Optimetrics会自动执行迭代过程,通过分析结果和调整参数,找到最优设计方案。 视频教程“8-1.avi”和“8-2.avi”很可能涵盖了如何创建和管理变量,以及如何设置和运行Optimetrics优化任务的步骤。可能包括以下内容:变量的定义和赋值、参数化几何构建、目标函数和约束条件的设定、优化算法的选择与设置、优化过程的监控和结果分析。通过这些视频,学习者可以直观地了解和掌握HFSS中的变量运用和优化设计,提升其在电磁仿真中的实际操作能力。 这个压缩包提供了HFSS用户一个宝贵的自学资源,无论是对初学者还是经验丰富的工程师,都能从中受益,提升在HFSS中进行高效、精确设计的能力。通过深入理解和熟练应用变量及Optimetrics模块,设计师可以在满足设计需求的同时,节约大量的时间和计算资源。
2025-12-09 11:12:36 411.23MB HFSS
1
基于Transformer的Matlab代码:数据回归与多场景预测工具箱,适用于单、多变量时序预测与回归分析,Transformer回归 Matlab代码 基于Transformer的数据回归预测(可以更为分类 单、多变量时序预测 回归,前私我),Matlab代码,可直接运行,适合小白新手 程序已经调试好,无需更改代码替数据集即可运行数据格式为excel Transformer 作为一种创新的神经网络结构,深受欢迎。 采用 Transformer 编码器对光伏、负荷数据特征间的复杂关系以及时间序列中的长短期依赖关系进行挖掘,可以提高光伏功率、负荷预测的准确性。 1、运行环境要求MATLAB版本为2023b及其以上 2、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要 3、代码中文注释清晰,质量极高 4、测试数据集,可以直接运行源程序。 替你的数据即可用 适合新手小白 ,Transformer回归; Matlab代码; 无需更改代码; 数据集替换; 创新神经网络; 时间序列; 长短期依赖关系挖掘; R2; MAE; MSE; 评估指标。,基于Transfor
2025-11-29 14:17:23 1.42MB ajax
1
内容概要:本文档详细介绍了基于 Matlab 实现的 POD-Transformer 融合模型,用于多变量回归预测。POD(本征正交分解)用于数据降维,提取关键特征,而 Transformer 模型则捕捉时序数据的长依赖关系。项目通过数据预处理、POD 降维、Transformer 回归和模型评估四个模块,实现了高效的数据降维与多变量回归预测。该方法不仅提高了预测精度和模型泛化能力,还显著降低了计算资源消耗,适用于气象预测、金融市场分析、工业过程控制、智能医疗和智能交通系统等多个领域。; 适合人群:具备一定机器学习和数据处理基础,对多变量回归预测感兴趣的科研人员、工程师及研究生。; 使用场景及目标:① 实现数据降维与多变量回归的高效融合,提升预测精度;② 优化计算资源消耗,降低训练时间;③ 提供普适性的数据降维与回归预测框架,适应不同领域的多变量回归任务;④ 促进数据驱动的智能决策系统发展。; 其他说明:项目通过改进的 POD 算法和定制化的 Transformer 模型,解决了数据降维后的信息丢失、计算复杂度高等问题。代码示例展示了从数据预处理到模型训练和预测的完整流程,适合在资源受限的环境中部署。更多详细内容和代码资源可参考提供的 CSDN 博客和文库链接。
2025-11-29 10:55:59 35KB Transformer 多变量回归 数据降维 Matlab
1
变量时间序列UEA数据,每个数据集文件夹下仅包含xxx_TRAIN.arff和xxx_TEST.arff两个文件,同时将文件中的%注释语句删除,使其能够直接通过scipy.io中的arff.loadarff方法读取数据。文件结构如下: New_Multivariate_arff: - ArticularyWordRecognition - ArticularyWordRecognition_TEST.arff - ArticularyWordRecognition_TRAIN.arff - AtrialFibrillation - AtrialFibrillation_TEST.arff - AtrialFibrillation_TRAIN.arff - BasicMotions - BasicMotions_TEST.arff - BasicMotions_TRAIN.arff ...
2025-11-28 20:33:09 854.71MB 数据集 时间序列 多变量时间序列
1
本文整理了五个常用的多变量时间序列异常检测数据集,包括SMD、SMAP/MSL、SWaT和WADI数据集,并提供了详细的标准化处理代码。这些数据集广泛应用于时间序列异常检测的基准测试,涵盖了不同领域的数据,如服务器机器数据、航天器遥测数据和水处理系统数据。文章详细介绍了每个数据集的具体信息、下载方式以及标准化处理步骤,包括时间格式统一、标签处理等。此外,还提供了针对MSL、SMAP、SMD、WADI和SWaT数据集的Python处理代码,帮助研究人员快速实现数据预处理。
2025-11-17 16:36:25 30MB 软件开发 源码
1
深入解析:基于COMSOL软件的三维损伤模型构建与损伤变量计算演化研究,COMSOL软件中损伤三维模型的构建与计算演化,comsol损伤三维模型 comsol软件通过自定义损伤变量和设置多个study实现损伤变量的计算和演化 ,损伤; comsol软件; 自定义损伤变量; study设置; 损伤计算; 损伤演化,Comsol软件:三维损伤模型构建与变量演化计算 基于COMSOL软件的三维损伤模型构建及损伤变量计算演化的研究是当前工程和科学研究领域的一项重要课题。随着科技的迅猛发展,特别是在材料学、结构工程及机械制造等领域,对于材料损伤过程的理解和预测变得尤为关键。材料在受力或环境因素影响下可能会产生损伤,如何准确地模拟和计算材料内部的损伤演化成为了一个亟待解决的技术难题。 COMSOL Multiphysics是一款高级的仿真软件,它能够处理多物理场耦合问题,提供了一种有效的工具来模拟材料的损伤过程。在该软件中,通过自定义损伤变量,研究者可以在模型中引入材料的损伤行为,如裂纹的形成、扩展以及最终的破坏。自定义损伤变量是一种重要的数值仿真技术,它允许研究者根据实际材料性能和实验数据来调整模型参数,以此来更加准确地预测材料的行为。 设置多个study在COMSOL中意味着能够在不同的条件和参数下进行仿真,这对于理解复杂条件下的材料损伤行为至关重要。例如,在一个研究中,可以设置多个study来研究温度变化、湿度变化、加载速率变化等因素对材料损伤的影响。通过这些不同的study,研究者可以得到更加全面和系统的仿真结果。 哈希算法作为一种安全的算法,通常用于数据完整性检验、加密、解密、数字签名及认证等方面。虽然从给定的文件名称列表中我们看到哈希算法被列为标签,但实际上在COMSOL软件中构建三维损伤模型以及进行损伤变量计算演化的研究中,哈希算法本身并非直接应用。这可能暗示了文档中除了专注于COMSOL软件的使用外,还可能涉及到了数据安全处理或验证过程的讨论。 结合提供的文件名称列表,我们可以看出文档中不仅有对COMSOL软件操作的具体介绍和深度解析,也有从不同视角对三维损伤模型技术的分析。文档可能包含了从理论基础、模型构建、参数设置到仿真结果分析的完整流程,以及对多个study设置的案例分析,旨在深入探讨软件在构建损伤模型和演算损伤变量方面的技术细节和应用方法。此外,内容还可能涵盖了从多元模型角度和跨学科视角下的损伤研究,以及如何利用技术博客文章来深入探讨和交流相关技术。 总结而言,本文详细介绍了基于COMSOL软件构建三维损伤模型的重要性和方法,涵盖了自定义损伤变量、设置多个study等关键技术点,同时可能还包含了对相关技术的综合分析和研究。对于相关领域的工程师和科研工作者来说,掌握这些知识对于提升材料分析能力和预测材料损伤行为具有重要的实践意义。
2025-11-15 10:29:30 3.45MB 哈希算法
1
内容概要:本文详细解析了某大厂11kW功率因数校正(PFC)系统的参数设计过程,特别是利用Mathcad进行具体参数计算的方法。首先介绍了主回路采用的典型三相Vienna结构及其关键参数设定,如输入电压范围和开关频率的选择。接着深入探讨了电流环参数的设计,包括控制带宽、比例积分控制器增益的计算方法,并强调了实际应用中需要考虑的安全余量。此外,还讨论了热设计中的IGBT损耗计算以及温度补偿系数的应用。最后指出工程实践中对理论公式的修正,如电感量增加15%余量的经验做法。文中多次提到Mathcad工具的强大功能,如自动单位换算、矩阵计算生成损耗云图等,使得复杂计算变得直观易懂。 适合人群:从事电力电子设计的专业工程师和技术人员,尤其是对PFC系统有研究兴趣的人士。 使用场景及目标:帮助读者掌握大厂级PFC系统参数设计的具体步骤和技巧,提高实际项目中的设计水平;同时学会运用Mathcad软件辅助完成复杂的工程计算任务。 其他说明:文章不仅提供了详细的数学推导过程,还包括了许多来自实践经验的小贴士,有助于初学者避免常见错误并加深对相关概念的理解。
2025-11-05 08:09:59 882KB
1
内容概要:介绍了一种使用MATLAB实现EMD-KPCA-LSTM、EMD-LSTM与传统LSTM模型进行多变量时间序列预测的方法。从光伏发电功率的实际数据出发,在生成带噪声信号的基础上,逐步探讨了利用经验模态分解处理数据非稳性、主成分分析实现降维处理和构建LSTM预测模型的技术路径,提供了全面细致的操作指导。 适用人群:针对有一定编程能力和数学理论背景的研究人员和技术开发者,尤其适用于那些想要探索先进预测建模并在实际应用案例中有兴趣的人士。 使用场景及目标:主要目的是为了更好地理解和优化针对波动较大或不稳定时间序列的预测能力。通过比较各模型预测表现,找到最适合特定应用场景的最佳配置方案,从而支持相关领域的决策制定过程。 其他说明:文中附带了完整的工作实例、步骤讲解与源代码示例,有助于用户复现实验流程并进行相应的调整改进,进而提高研究效率或促进新项目启动。
2025-11-01 17:12:01 30KB MATLAB LSTM EMD KPCA
1
内容概要:本文介绍了基于Transformer-BiGRU的多变量回归预测模型,详细阐述了模型的构建方法、数据预处理流程以及在Matlab中的具体实现。该模型结合了Transformer和BiGRU的优势,能够有效处理多变量输入并提高回归预测的精度。文中还讨论了多种优化算法的应用,如冠豪猪CPO和霜冰RIME,用于参数自动化寻优,进一步提升模型性能。此外,文章提供了详细的代码注释和测试数据,方便初学者快速上手。最后,探讨了该模型在金融预测、气象预测、医疗诊断等多个领域的广泛应用前景。 适合人群:对机器学习和深度学习感兴趣的科研人员、学生以及有一定编程基础的数据分析师。 使用场景及目标:适用于需要处理多变量输入并进行高精度回归预测的研究项目。目标是帮助用户理解和实现基于Transformer-BiGRU的多变量回归预测模型,掌握模型调参技巧,应用于实际数据分析任务。 其他说明:附带完整的Matlab代码和测试数据,确保用户可以直接运行并验证模型效果。
2025-10-22 18:02:30 1.6MB
1
内容概要:本文详细介绍了一种利用Matlab实现高斯过程回归(GPR)进行单变量时间序列预测的方法。主要内容涵盖数据预处理(如z-score标准化)、选择合适的核函数(如平方指数核)、训练GPR模型、预测并生成置信区间以及评估预测性能的关键指标(如RMSE、区间覆盖率)。文中还提供了具体的代码示例,从数据加载、清洗、建模到最后的效果展示,帮助读者全面掌握GPR的应用流程。此外,针对常见的预测滞后问题提出了解决方案,并强调了GPR在不确定性量化方面的优势。 适合人群:对机器学习特别是时间序列预测感兴趣的初学者和有一定编程基础的研究人员。 使用场景及目标:适用于需要对未来某一时刻的数值做出预测并且希望获得相应置信区间的场合,如电力负荷预测、金融数据分析等。通过学习本文可以快速搭建起一套完整的GPR预测系统,用于研究或实际项目中。 其他说明:文中提到的一些技巧对于提高预测精度非常重要,例如正确选择核函数、合理设置超参数等。同时,作者也分享了一些实用的经验,如如何处理大规模数据集、怎样优化模型性能等。
2025-10-16 15:56:13 351KB
1