项目源码:基于Hadoop+Spark招聘推荐可视化系统 大数据项目 计算机毕业设计 基于Hadoop+Spark的招聘推荐可视化系统是一种利用Hadoop和Spark等大数据处理技术,实现招聘推荐和可视化展示的应用系统。以下是该系统的主要介绍: 数据采集:系统通过各种渠道(如招聘网站、社交媒体等)获取大量的招聘相关数据,包括职位信息、公司信息、求职者信息等。这些数据以结构化或半结构化形式存在。 数据存储与处理:系统利用Hadoop分布式文件系统(HDFS)存储采集到的招聘数据,并使用Hadoop生态圈中的工具(如Hive、HBase等)进行数据处理和管理。Spark作为数据处理引擎,提供高性能的批处理和实时计算能力,对招聘数据进行清洗、转换和特征提取等操作。 招聘推荐:系统利用Spark的机器学习库(如MLlib)构建候选模型,通过对求职者的个人资料、工作经历、技能等特征进行分析,匹配合适的职位和公司。系统可以根据用户的偏好和需求,向其推荐最相关的招聘信息。 可视化展示:系统利用可视化工具(如matplotlib、Plotly等)将招聘数据以各种图表、图形等形式可视化展示。
2025-12-29 02:30:06 191.07MB hadoop spark 毕业设计
1
基于Hadoop+Spark招聘推荐可视化系统 大数据项目 毕业设计(源码下载) 基于Hadoop+Spark的招聘推荐可视化系统是一种利用Hadoop和Spark等大数据处理技术,实现招聘推荐和可视化展示的应用系统。以下是该系统的主要介绍: 数据采集:系统通过各种渠道(如招聘网站、社交媒体等)获取大量的招聘相关数据,包括职位信息、公司信息、求职者信息等。这些数据以结构化或半结构化形式存在。 数据存储与处理:系统利用Hadoop分布式文件系统(HDFS)存储采集到的招聘数据,并使用Hadoop生态圈中的工具(如Hive、HBase等)进行数据处理和管理。Spark作为数据处理引擎,提供高性能的批处理和实时计算能力,对招聘数据进行清洗、转换和特征提取等操作。 招聘推荐:系统利用Spark的机器学习库(如MLlib)构建候选模型,通过对求职者的个人资料、工作经历、技能等特征进行分析,匹配合适的职位和公司。系统可以根据用户的偏好和需求,向其推荐最相关的招聘信息。 可视化展示:系统利用可视化工具(如matplotlib、Plotly等)将招聘数据以各种图表、图形等形式可视化展示。例如,
2025-11-23 18:25:05 191.07MB hadoop spark 毕业设计
1
标题基于Python的外卖配送分析与可视化系统研究AI更换标题第1章引言介绍外卖配送分析与可视化系统的研究背景、意义、国内外研究现状、论文方法及创新点。1.1研究背景与意义阐述外卖行业快速发展下,配送分析与可视化系统的重要性。1.2国内外研究现状分析国内外在外卖配送分析与可视化方面的研究进展。1.3研究方法及创新点概述系统实现所采用的方法和本文的创新之处。第2章相关理论总结和评述与外卖配送分析及可视化系统相关的理论。2.1数据挖掘与分析理论介绍数据挖掘技术在外卖配送数据分析中的应用原理。2.2可视化技术理论阐述可视化技术在展示外卖配送数据中的作用和实现方法。2.3地理信息系统理论解释地理信息系统在外卖配送路线规划中的应用。第3章系统设计详细介绍外卖配送分析与可视化系统的设计方案。3.1系统架构设计给出系统的整体架构,包括输入输出、处理流程和模块功能。3.2数据库设计阐述数据库的设计思路,包括数据表结构和数据关系。3.3界面设计介绍系统的用户界面设计,包括操作流程和交互方式。第4章系统实现外卖配送分析与可视化系统的具体实现过程。4.1Python环境配置介绍系统开发所需的Python环境及相关库的安装和配置。4.2数据收集与预处理阐述外卖配送数据的收集方法和预处理流程。4.3分析与可视化功能实现详细介绍数据分析和可视化功能的实现代码和逻辑。第5章系统测试与优化对系统进行测试,评估性能,并根据测试结果进行优化。5.1系统测试方法介绍系统测试所采用的方法和测试用例设计。5.2测试结果分析分析系统测试结果,评估系统性能和稳定性。5.3系统优化策略根据测试结果提出系统优化策略,提升系统性能。第6章结论与展望总结研究成果,提出未来研究方向。6.1研究结论概括外卖配送分析与可视化系统的主要研究成果和创新点。6.2展望指出系统研究的不足之处以及未来可能的研究方向。
2025-11-21 18:08:17 14.96MB django python mysql vue
1
**QT实现的信号分析与数据可视化系统:实时更新频谱、瀑布、星座等图示**,基于QT平台的软件无线电信号处理与显示系统,软件无线电显示,信号调制解调显示软件。 利用QT实现:频谱图、瀑布图、星座图、比特图、音频图,数据动态更新及显示。 具体功能如下: 1、随机产生模拟数据,实现动态绘制,动态更新;实现画布放大、缩小(滚轮)及拖动功能。 2、随机产生频谱图模拟数据,实现频谱图动态更新及显示。 3、随机产生瀑布图模拟数据,实现瀑布图动态更新及显示。 4、随机产生星座图模拟数据,实现星座图动态更新及显示。 5、随机产生比特图模拟数据,实现比特图动态更新及显示。 6、随机产生音频图模拟数据,实现音频图动态更新及显示。 7、随机数产生及数据容器使用功能。 8、增加频谱图随色带动态变化而变化功能,色带动态调整功能。 程序设计高效,简洁,注释多,方便集成。 大数据量显示,不卡顿。 提供源代码、注释及使用说明文档 ,关键词:软件无线电;信号调制解调;显示软件;QT实现;频谱图;瀑布图;星座图;比特图;音频图;动态更新;随机
2025-10-20 13:38:52 439KB
1
基于卷积神经网络的阿尔茨海默症分类代码 共包含9888张阿尔茨海默症MRI图像 本代码旨在借助深度学习方法对阿尔茨海默症(Alzheimer’s Disease, AD)患者的磁共振成像(Magnetic Resonance Imaging, MRI)图像进行分类分析,以提升疾病早期诊断的准确性与效率。研究重点评估了三种主流卷积神经网络模型——ResNet、MobileNetV3 和 DenseNet121 在该任务中的应用效果,并通过对比实验分析各模型在图像分类中的性能差异,涵盖准确率、召回率、精确率及 F1 分数等关键评价指标。 原文链接:https://blog.csdn.net/qq_42492056/article/details/148675350 结果显示 DenseNet121 在多个指标上表现优越,其准确率、召回率、精确率和 F1 分数分别为 0.9889、0.9894、0.9894 和 0.9901,优于其余模型。除了性能比较外,本研究还探讨了将深度学习模型集成到医学图像分析流程中的可行性,并设计并开发了一个针对 AD 图像分类的系统原型,进一步验证了该技术在实际临床辅助诊断中的应用前景与实用价值。
2025-10-15 13:40:17 274.74MB 人工智能 图像分类 python 毕业设计
1
# 基于Python的豆瓣电影数据分析与可视化系统 ## 项目简介 本项目是一个基于Python的豆瓣电影数据分析与可视化系统,旨在为电影爱好者和专业人士提供全方位的个性化观影服务体验。系统通过从豆瓣电影平台抓取电影数据,包括影片详情、评分、评论、标签等信息,进行数据整合、分析和可视化展示,帮助用户快速理解电影市场的整体特征与趋势。 ## 项目的主要特性和功能 1. 数据采集利用Python爬虫技术从豆瓣电影平台抓取电影数据,包括影片基本信息、主创团队、评分、评论等多元信息。 2. 数据概览生成详尽的数据概览报告,包括最高评分、评分折线图、最受欢迎类型、热门演员等统计摘要。 3. 信息检索提供用户友好的搜索接口,支持多维度条件查询,快速定位目标电影及相关信息。 4. 数据管理对已获取的电影数据进行编辑和删除操作,便于个性化整理与长期跟踪。
2025-09-10 13:01:38 6.58MB
1
实战OpenGL三维可视化系统开发与源码精解,PDF文件,免费分享给大家!!!大家支持
2025-08-24 00:43:21 229.96MB
1
在计算机图形学领域,OpenGL(Open Graphics Library)是一个历史悠久且广泛使用的跨语言、跨平台的应用程序编程接口(API),专门用于渲染2D和3D矢量图形。它为开发者提供了一种与硬件无关的方式来创建复杂的图形和动画效果。OpenGL的高级图形处理能力,使得它成为三维可视化系统开发的理想选择。 三维可视化系统通常用于模拟现实世界的三维场景,这在科学计算、工程设计、医学成像、虚拟现实、视频游戏开发等多个领域都有广泛的应用。通过三维可视化系统,用户可以更加直观地理解和分析数据,进行虚拟设计和仿真测试,甚至可以用于教育和娱乐行业。 开发一个高质量的OpenGL三维可视化系统,需要开发者具备深厚的计算机图形学知识、扎实的编程能力以及对OpenGL API的深入理解。此外,掌握相关的辅助工具和库,如GLUT(OpenGL Utility Toolkit)、GLEW(OpenGL Extension Wrangler Library)以及着色器编程等,对于实现高效和复杂的三维渲染效果至关重要。 《实战OpenGL三维可视化系统开发与源码精解》这本书籍,旨在通过实战项目的方式,帮助读者快速掌握OpenGL在三维可视化系统开发中的应用。书中不仅详细介绍了OpenGL的基础知识,还提供了丰富的实战案例和源代码解析,让读者能够一步步构建出自己的三维可视化系统。通过对书中案例的学习,开发者能够学会如何利用OpenGL进行场景的搭建、光照和材质的处理、动画的实现以及交互功能的设计等。 本书的目标读者是具有一定编程基础,且对三维图形学感兴趣的开发者。无论是初学者还是具有一定经验的程序员,都可以从本书中获得实用的知识和技巧。对于初学者而言,书中的基础知识和实例讲解可以作为入门的指南;对于经验丰富的开发者,书中的高级技术应用和源码分析可以作为提升和参考的资源。 通过深入学习《实战OpenGL三维可视化系统开发与源码精解》,开发者可以有效地掌握OpenGL在三维可视化系统开发中的应用,从而在实际项目中实现高质量的三维图形渲染和交云处理,提升用户体验,拓展三维图形应用的可能性。
2025-08-24 00:34:15 406.09MB OpenGL
1
内容概要:本文档提供了一个用于股票技术分析的获利标签指标副图指标代码。该代码主要由多个部分组成,包括获利比例计算、市场趋势分析、买卖区间判断以及强势波段识别。通过计算当前价格的获利比例,并与前一日进行对比,使用不同颜色的线条表示不同的获利水平。同时,利用移动平均线(MA)来评估市场趋势,通过比较短期和长期均线的变化率,用彩色线条展示市场的涨跌情况。此外,还定义了买卖线,当买线高于卖线时显示蓝色,反之则为绿色。最后,通过一系列复杂公式计算出“紫色强势波段”,以判断当前是否处于强势市场。; 适合人群:对股票交易和技术分析有一定了解的投资者或分析师。; 使用场景及目标:①帮助投资者直观地了解股票的获利情况;②辅助判断市场趋势,识别买卖时机;③通过技术指标分析,提高投资决策的准确性。; 其他说明:此代码适用于支持同花顺或其他兼容技术分析软件平台,用户可以根据自身需求调整参数设置,以更好地适应不同的市场环境。
2025-08-03 13:28:17 2KB 股票分析 技术指标 市场趋势
1
一个基于Spark的数据分析可视化系统,使用Centos7虚拟机和Scala语言进行数据清洗和处理,将处理后的数据导入虚拟机MySQL,然后使用Idea编写后端代码,使用Springboot框架,获取虚拟机数据库的数据,编写接口,然后通过VUE+Echarts获取后端的数据,进行数据图表的可视化。源码可接受订制!!私信联系即可!!哔哩哔哩视频教程链接如下,可参考教程直接配置环境!100%成功!!【基于Spark的数据分析可视化系统(Spark+Spring+Vue+Echarts)】 https://www.bilibili.com/video/BV1CD421p7R4/?share_source=copy_web&vd_source=4a9b6d12f0ee73ad7b15447b83c95abd
2025-06-26 16:27:55 420KB spark 数据分析 spring vue.js
1