TCD1209D的驱动脉冲波形图(说明书截图)
2026-02-01 12:07:17 3.6MB 图像传感器
1
该数据集包含一组带注释的肝脏超声图像,旨在帮助开发用于肝脏分析、分割和疾病检测的计算机视觉模型。注释包括肝脏和肝脏肿块区域的轮廓,以及良性、恶性和正常病例的分类。此数据集提供肝脏的超声图像和详细的注释。注释突出显示肝脏本身和存在的任何肝脏肿块区域。这些图像分为三类: 良性:显示良性肝脏状况的图像。 恶性:显示肝脏恶性病变的图像。 正常:健康肝脏的图像。 在医学图像处理领域,肝脏超声图像分析是一个重要的研究方向。准确地识别和分析肝脏图像对于早期发现和治疗肝脏相关疾病具有重大意义。近年来,随着计算机视觉技术的飞速发展,利用人工智能算法对肝脏超声图像进行自动分析和诊断,已成为医疗领域的一项创新技术。 本数据集名为“注释超声肝脏图像数据集”,它为研究者提供了珍贵的资源,用于训练和验证计算机视觉模型,特别是用于深度学习中的医学图像分析。数据集中的图像经过精心挑选和注释,覆盖了广泛的情况,包括健康肝脏图像(正常类)、存在良性病变的肝脏图像(良性类),以及出现恶性病变的肝脏图像(恶性类)。 图像注释是这个数据集的一大特点。每个图像都附有详细的注释信息,标明了肝脏的轮廓以及肝脏内的肿块区域,这对于医学图像分割和模式识别至关重要。这种注释不仅能帮助算法理解图像中重要的视觉特征,还能用于监督学习,训练模型以区分良性与恶性病变,以及识别正常肝脏结构。 机器学习尤其是深度学习中的卷积神经网络(CNN)在处理此类图像数据方面显示出极大的潜力。通过对数据集中的图像及其对应的注释进行训练,可以构建出能够准确识别并定位肝脏病变区域的模型,从而辅助医生进行更为准确的诊断。而且,随着研究的深入,这些模型有望应用于自动化检测、影像报告生成等临床工作流程中。 数据集的分类策略有助于提高分类模型的准确性,同时也支持了对不同类别肝脏状况的深入研究。例如,良性病例的研究可以帮助了解肝脏良性病变的特征和变化规律;恶性病例的研究则对揭示肝脏恶性肿瘤的发展过程具有重要价值。而正常肝脏图像的分析,则有助于建立健康肝脏的影像学标准。 除此之外,数据集中的图像还可以用来训练计算机视觉系统进行图像重建,提高超声图像的质量,这对于增强医生的诊断信心也有积极作用。图像增强技术可以通过学习大量的高质量图像数据,从而在实际应用中改善低质量图像的视觉效果,进一步辅助医生进行更准确的诊断。 该数据集不仅为医学图像分析的研究者提供了一个高质量的学习和测试平台,而且也为开发先进的计算机辅助诊断工具奠定了坚实的基础。通过对注释超声肝脏图像数据集的深入研究和应用,将有望显著提高肝脏疾病的诊断效率和准确性,最终改善患者的治疗效果和生活质量。
2026-01-28 22:43:37 67.2MB 数据集 机器学习
1
图像处理领域,"图像分块"是一种常见的技术,它涉及到将一幅大的图像分割成多个较小的、相互独立的区域,这些区域被称为“图像块”或“像素块”。这种技术在许多应用中都有广泛的应用,比如图像压缩、图像分析、特征提取以及机器学习等。下面我们将深入探讨这一主题。 图像分块的基本原理是将图像按一定的行和列间隔划分,形成一个个大小相同的矩形区域。例如,如果图像的宽度和高度分别是\( W \)和\( H \),我们可以将其分割成\( M \times N \)个块,每个块的大小为\( \frac{W}{M} \times \frac{H}{N} \)。这种操作通常使用矩阵运算来实现,尤其是在编程语言如C中。 在C语言中,处理图像数据通常涉及以下步骤: 1. **图像读取**:我们需要一个库来读取图像文件,如OpenCV库,它可以方便地读取常见的图像格式(如JPEG、PNG等)。使用OpenCV,可以使用`cv::imread`函数读取图像到内存。 2. **数据结构**:图像数据通常以二维数组的形式存储,每个元素代表一个像素,包含红、绿、蓝(RGB)三个通道的值。在C中,可以使用二维字符数组或结构体数组来表示。 3. **分块操作**:通过循环遍历图像的行和列,每次取出一块,可以创建一个新的小数组或者结构体实例来保存这块的像素值。在C中,这可以通过两个嵌套的for循环实现,计算每个块的起始位置和结束位置,然后复制这些像素到新的数组。 4. **处理每个块**:一旦图像被分割成小块,就可以对每个块单独进行处理,如颜色空间转换、滤波、边缘检测等。这些处理可能针对每个像素执行,也可能涉及到块内的像素统计。 5. **结果整合**:处理完所有块后,将结果合并回原图大小的数组,可以使用类似的方法将处理后的块重新拼接起来。 6. **图像写入**:使用`cv::imwrite`函数将处理后的图像保存到文件。 在实际应用中,图像分块有很多优点,比如可以减少计算复杂性,便于分布式处理,同时也可以提高某些算法的性能,如图像编码和解码中的离散余弦变换(DCT)等。然而,它也存在一些挑战,比如块边界效应,可能会导致图像质量下降。 图像分块是图像处理中的一个重要技术,它在各种场景下都有着广泛的应用。通过熟练掌握C语言和相关的图像处理库,可以实现高效且灵活的图像分块处理程序。在学习过程中,理解图像数据的存储方式、分块算法的实现以及如何与特定的图像处理任务相结合,都是非常关键的。
2026-01-28 21:48:00 1011KB 图像处理
1
该指南适用于 Hi3519D V500、Hi3516D V500、Hi3516C V608、Hi3516C V610 等产品版本,主要面向技术支持工程师和软件开发工程师。文档以 Hi3519DV500 为例进行描述,Hi3519DV500 与 Hi3516DV500 内容一致,且说明 cmos_ex.h 在 Hi3516CV610 芯片上对应文件为 cmos_param.h。 文档内容结构丰富,包含前言、PQ 调优文档关系说明、ISP 系统概述、图像质量调优总体概述、模块介绍、AIISP 调试指南等部分。前言部分介绍了文档的版本、发布日期、版权信息、商标声明、注意事项、适用产品、读者对象、符号约定及修改记录等;PQ 调优文档关系说明部分介绍了与该指南相关的其他文档,如《ISP 开发参考》《ISP 颜色调优说明》等;ISP 系统概述部分包括功能简介、ISP 功能框图及各模块简介;图像质量调优总体概述部分针对录像机应用场景,分别介绍了线性模式和 WDR 模式的图像质量调优,涉及亮度、色彩、对比度、清晰度和噪声等维度的调试;模块介绍部分详细阐述了 Sharpen、Demosaic、BayerSharpen、NR、DPC、DRC 等多个模块的功能描述、关键参数和调试步骤;AIISP 调试指南部分则介绍了 AIBNR、AIDRC、AI3DNR 的调试方法,包括概述、关键参数、调试步骤及注意事项等。 此外,文档还包含插图目录和表格目录,方便用户查阅相关图表信息,且修改记录详细记载了从版本 01 到 06 的历次修改内容,如章节调整、内容添加、版本升级等,便于用户了解文档的更新轨迹。
2026-01-28 16:33:08 13.65MB 人工智能
1
图像处理中的数学方法》是田金文教授关于图像处理领域的一部著作,该书深入探讨了数学在图像处理中的应用。图像处理是一门多学科交叉的领域,它结合了计算机科学、电子工程、数学以及视觉心理学等多个领域的知识,而数学方法作为其核心工具,对于理解和实现高效图像处理算法至关重要。 在书中,田金文教授首先介绍了图像的基本概念和表示方式,包括像素、灰度图像和彩色图像等。图像通常以矩阵形式存储,每一行每一列的元素代表一个像素的亮度或颜色信息。通过数学运算,我们可以对这些像素进行操作,如调整亮度、对比度、色彩平衡等,以改善图像质量或提取有用信息。 接下来,书中详细讲解了傅立叶变换在图像处理中的应用。傅立叶变换是一种将图像从空间域转换到频率域的方法,它能够揭示图像的频率成分,这对于图像滤波、降噪和频谱分析至关重要。例如,高通滤波可以去除低频噪声,保留边缘细节;低通滤波则可以平滑图像,减少高频噪声。 此外,书中还涉及了小波分析这一强大的数学工具。小波分析能提供多尺度、多分辨率的图像表示,这对于图像的局部特征检测、压缩和恢复非常有效。在图像去噪、边缘检测、图像压缩等领域,小波分析都有广泛的应用。 图像几何变换也是图像处理的重要部分,包括平移、旋转、缩放和透视变换等。这些变换常用于图像校正、配准和合成。田金文教授可能详细阐述了基于矩阵的几何变换理论,以及如何通过这些变换实现图像的精确操作。 在图像分割方面,可能会介绍阈值分割、区域生长、边缘检测等方法,这些都是从图像中提取目标物体的基础。数学方法,如阈值选择的优化算法、图论在区域连接中的应用等,都是这部分的关键。 书中可能还会讨论到一些高级主题,如机器学习和深度学习在图像识别、分类和目标检测中的应用。这些现代技术利用复杂的数学模型,如神经网络,自动学习图像的特征,极大地推动了图像处理的发展。 《图像处理中的数学方法》全面覆盖了从基础理论到高级技术的图像处理内容,是学习和研究图像处理领域的重要参考资料。通过学习这本书,读者不仅能掌握数学在图像处理中的应用,还能理解如何利用这些数学工具解决实际问题。
2026-01-26 22:14:27 10.36MB 图像处理
1
Matlab肺结节分割(肺结节提取)源程序,也有GUI人机界面版本。 使用传统图像分割方法,非深度学习方法。 使用LIDC-IDRI数据集。 工作如下: 1、读取图像。 读取原始dicom格式的CT图像,并显示,绘制灰度直方图; 2、图像增强。 对图像进行图像增强,包括Gamma矫正、直方图均衡化、中值滤波、边缘锐化; 3、肺质分割。 基于阈值分割,从原CT图像中分割出肺质; 4、肺结节分割。 肺质分割后,进行特征提取,计算灰度特征、形态学特征来分割出肺结节; 5、可视化标注文件。 读取医生的xml标注文件,可视化出医生的标注结果; 6、计算IOU、DICE、PRE三个参数评价分割效果好坏。 7、做成GUI人机界面。 两个版本的程序中,红框内为主函数,可以直接运行,其他文件均为函数或数据。
2026-01-26 16:12:35 301KB matlab 深度学习
1
遥感图像处理之分类 本文主要介绍遥感图像处理中的分类方法,包括非监督分类和监督分类两大类。非监督分类中,K-均值分类和ISODATA算法是两种常用的方法,而监督分类中,以最大似然法为例,进行分类的讲解说明。 一、非监督分类 非监督分类是指在不知道分类结果的情况下,对遥感图像进行分类的方法。常用的非监督分类方法有K-均值分类和ISODATA算法。 1、K-均值分类算法 K-均值分类算法是一种常用的非监督分类方法。其步骤如下: (1)打开待分类的遥感影像数据 (2)依次打开:ENVI 主菜单栏—>Classification—>Unsupervised—>K-Means,即进入 K-均值分类数据文件选择对话框 (3)选择待分类的数据文件 (4)选好数据以后,点击 OK 键,进入 K-Means 参数设置对话框,进行有关参数的设置,包括分类的类数、分类终止的条件、类均值左右允许误差、最大距离误差以及文件的输出等参数的设置 (5)建立光谱类和地物类之间的联系:在新窗口中显示分类结果图:然后,打开显示窗口菜单栏 Tools 菜单—>Color Mapping—>Class Color Mapping…进入分类结果的属性设置对话框,在这里,可以进行类别的名称,显示的颜色等,建立了光谱类和地物类之间的联系。 (6)类的合并问题:如果分出的类中,有一些需要进行合并,可按以下步骤进行:选择ENVI 主菜单 Classfaction—>Post Classfiction—>Combine Classes,进入待合并分类结果数据的选择对话框 点击 OK 键,进入合并参数设置对话框,在左边选择要合并的类,在右边选择合并后的类 ,点击 Add Combination 键即完成一组合并的设置,如此反复,对其他需合并的类进行此项操作,点击 OK,出现输出文件对话框,选择输出方式,即完成了类的合并的操作。 2、ISODATA 算法 ISODATA 算法与 K-均值分类算法相似。其步骤如下: (1)进行分类数据文件的选择(依次打开:ENVI 主菜单栏—>Classification—>Unsupervised—>IsoData 即进入 ISODATA 算法分类数据文件选择对话框,选择待分类的数据文件) (2)进行分类的相关参数的设置(点击 OK 键以后,进入参数设置对话框,可以进行分类的最大最小类数、迭代次数等参数的设置) (3)如此,光谱类的划分到此结束。 (4)参看 K-均值分类的第 5—6 步,进行光谱类与地物类联系的建立以及类的合并等操作 二、监督分类 监督分类是指在知道分类结果的情况下,对遥感图像进行分类的方法。常用的监督分类方法有最大似然法、平行六面体法、最小距离法、最大似然法、波谱角法、马氏距离法、二值编码法、神经网络法等。 以最大似然法为例,进行分类的讲解说明: (1)打开待分类的遥感影像数据文件 (2)进行训练样本的选取:在窗口中打开一张影像,选择主窗口菜单栏 Tools 键—>Region Of Interest—>ROI Tools…(或是在主窗口上单击右键,在弹出的快捷菜单栏中选择 ROI Tools…)进入训练样本选取对话框。 (3)进行训练样本的选取,New Region 可以建立新的样本区,在 ROI Name 栏中双击,键入类的地物名,在 Color 栏中双击,可以输入类的颜色,ROI_Type 菜单下可以进行样本类型的设置,在主窗口按鼠标左键即可进行样本区选择,以双击右键结束样本区的选取。 (4)进行最大似然法的分类:在 ENVI 主菜单栏中 Classification—>Supervised—>Maximum Likelihood,进入分类文件的选取对话框,选择相应的待分类文件。然后进入训练样本选取对话框,进行训练样本的选取及分类结果的存储等方面的设置。 (5)单击 OK 键,即开始进行分类。 (6)参看 K-均值分类的第 5—6 步,进行类的相关设置及类的合并等操作 三、两类分类方法的比较 本文使用 K-均值分类法和最大似然法进行了分类比较。从总体上看,两种分类的方法存在较大的差异,这是由于两种分类在相关参数的选取时都存在较大的主观性,在 K-均值分类的算法中,类数的选取对结果有显著影响,在最大似然法分类中,样本选取的数量,样本的质量以及样本的代表性等对分类的结果都会产生很大的影响,这就需要进行相关参数的调节来使得分类效果达到最佳。 遥感图像处理中的分类方法有多种,选择合适的分类方法对分类结果的影响很大。因此,在进行遥感图像处理时,需要根据实际情况选择合适的分类方法,并进行相关参数的调节,以达到最佳的分类效果。
2026-01-26 14:00:46 866KB envi
1
迅雷NUS-WIDE数据图像, 大约6G
2026-01-25 19:19:36 15KB 数据集 NUS-WIDE
1
基于 RoboMaster EP 的机器人开发工具包,提供了用于控制机器人移动、获取激光雷达数据、处理摄像头图像等一系列脚本和功能模块(源码) 文件结构 rmep_base/scripts/:包含多个 Python 脚本,用于实现不同的机器人控制功能。 ydlidar_ros_driver-master/:集成 YDLIDAR 的 ROS 驱动,用于获取激光雷达数据。 detection_msgs/:包含自定义消息类型,用于 ROS 节点间通信。 依赖 ROS (Robot Operating System) RoboMaster Python SDK YDLIDAR SDK 安装 RoboMaster Python 库 确保已安装 Python 3.x。 使用 pip 安装 RoboMaster SDK: pip install robomaster 使用说明 发布话题(默认话题名字) /camera/image_raw:摄像头图像数据。 /scan:激光雷达扫描数据。 订阅话题(默认话题名字) /move_cmd:移动控制指令。 发布服务 /start_scan:启动激光雷达扫描。 /stop_scan:停止激光雷达扫描。 其他说明 ztcar.launch:启动机器人基础功能的 ROS 启动文件。 ydlidar.launch:启动 YDLIDAR 的 ROS 启动文件。 ztcar_move.py:包含机器人移动控制函数,如前进、后退、转向等。 ztcar_camera.py:处理摄像头图像并发布图像话题。 ztcar_result.py:处理检测结果话题的回调函数。
2026-01-25 15:33:39 663KB Python
1
自动驾驶多传感器联合标定系列:激光雷达到相机图像坐标系标定工程详解,含镂空圆圆心检测及多帧数据约束的外参标定方法,附代码注释实战经验总结,自动驾驶多传感器联合标定系列之激光雷达到相机图像坐标系的标定工程 , 本提供两个工程:基于雷达点云的镂空标定板镂空圆圆心的检测工程、基于镂空标定板的激光雷达到相机图像坐标系的标定工程。 其中镂空圆圆心的检测是进行lidar2camera标定的前提。 lidar2camera标定工程中带有多帧数据约束并基于Ceres非线性优化外参标定的结果。 这两个工程带有代码注释,帮助您对标定算法的的理解和学习。 实实在在的工作经验总结 ,核心关键词: 1. 自动驾驶 2. 多传感器联合标定 3. 激光雷达到相机图像坐标系标定 4. 镂空标定板 5. 圆心检测 6. lidar2camera标定 7. 多帧数据约束 8. Ceres非线性优化 9. 外参标定 10. 代码注释 用分号分隔的关键词结果为: 自动驾驶;多传感器联合标定;激光雷达到相机图像坐标系标定;镂空标定板;圆心检测;lidar2camera标定;多帧数据约束;Ceres非线性优化;外参标定;代
2026-01-24 22:50:07 215KB
1