《傻瓜式图片去水印工具——Inpaint_CN详解》 在数字图像处理领域,去除图片中的水印是一项常见的需求,无论是个人用户还是专业设计师,都可能遇到这个问题。"傻瓜式图片去水印工具.zip" 提供了一个简单易用的解决方案——Inpaint_CN。这款工具以其强大的功能和直观的操作方式,让即使是初学者也能轻松去除图片水印,恢复图像的原始美感。 Inpaint_CN 是一款专门针对图片水印去除的软件,它经过了完美的汉化处理,确保中国用户可以无障碍地使用。其“傻瓜式”设计意味着用户无需具备复杂的图像处理技术,只需通过简单的鼠标操作,就能实现水印的高效去除。 使用Inpaint_CN的过程非常直观:打开含有水印的图片,然后使用鼠标选择水印所在的区域。这个过程就像在图片上画一个框,标记出需要处理的部分。接着,点击“运行”按钮,软件会智能分析并替换选区内的内容,试图使这部分与周围环境融合,从而达到去除水印的效果。 值得注意的是,Inpaint_CN的效果在不同类型的水印和背景上可能会有所差异。如果水印区域的颜色变化复杂,或者与周围环境有强烈的对比,那么去除效果可能不尽如人意。这是因为算法需要在保持图像整体质量的同时,找到合适的像素进行填充,颜色层次越多,难度越大。尽管如此,对于大多数常见的水印,Inpaint_CN仍能提供相当满意的结果。 在实际应用中,Inpaint_CN不仅可以用于去除水印,还可以处理其他类型的图像瑕疵,比如去除不想要的路人、电线、logo等,为照片提供更干净、整洁的视觉体验。对于需要处理大量图片的用户,如摄影师、社交媒体管理员或网页设计师来说,Inpaint_CN无疑是一款极具价值的工具。 Inpaint_CN作为一款中文版的图片去水印软件,凭借其简便的操作和良好的去水印效果,为图像处理带来极大的便利。尽管在某些复杂情况下可能需要多次尝试,但总体而言,它仍然是一个值得信赖的解决方案,帮助我们恢复图片的原始之美,去除那些不和谐的元素。无论你是图像处理新手还是资深用户,Inpaint_CN都值得一试。
2025-08-05 10:13:45 1.72MB 图形图像-图像处理
1
C# - 图片抠像 - PP.Matting.HRNET - 含模型 - 完整可运行 。Sdcb.PaddleInference.dll, YamlDotNet.dll,ppmatting-hrnet_w18-human_512 在当今快速发展的信息技术领域,图像处理技术的应用变得越来越广泛,尤其是在图像抠图领域,它为人们提供了丰富多彩的视觉体验。在众多图像抠图工具中,C#作为一种功能强大的编程语言,因其高效性和易用性在图像处理中占有重要地位。C#通过集成不同算法库,可以实现复杂图像的高效抠像处理,尤其是在处理包含复杂背景和人体图像时,能够提供较好的抠像效果。 本文件介绍的项目名为"C# - 图片抠像 - PP.Matting.HRNET - 含模型 - 完整可运行",其核心内容是使用PP.Matting.HRNET算法进行图像抠像。PP.Matting.HRNET算法是一种深度学习方法,用于提高图像抠像的质量,特别是针对人体边缘的精细处理。在计算机视觉任务中,抠像通常指的是将图像中的前景物体与背景分离,这对于图像合成、虚拟现实和视频编辑等领域至关重要。 在实际应用中,PP.Matting.HRNET算法通过构建一个高分辨率的网络结构,能够在保持边缘细节的同时,更好地保留图像中的人体特征。由于算法的复杂性,开发者往往需要集成预训练模型,并借助特定的库文件来实现算法的运行。项目中提到的"Sdcb.PaddleInference.dll"和"YamlDotNet.dll"就是此类库文件,它们分别用于加载和运行预训练模型以及处理配置文件。此外,"ppmatting-hrnet_w18-human_512"则是PP.Matting.HRNET模型的特定版本,用于执行高精度抠像。 项目文件列表中的"App.config"通常用于存储应用程序的配置信息,而"Form1.cs"、"Form1 Designer.cs"、"Program.cs"则包含了程序的主界面和入口点代码,这些是构建桌面应用程序的基本文件。"抠像-PP.Matting.HRNET.csproj"是项目的配置文件,它定义了项目构建和运行的相关设置。"Form1.resx"用于管理资源文件,比如图像、字符串等本地化资源。"obj"和"bin"文件夹则分别用于存放编译过程中的中间文件和最终生成的可执行文件。 在"C# - 图片抠像 - PP.Matting.HRNET - 含模型 - 完整可运行"项目中,开发者可以利用C#语言结合上述提到的算法和库,无需依赖于绿幕等硬件设备,即可实现高质量的图像抠像。这不仅提高了图像处理的灵活性,也降低了成本,特别是在需要对大量图像进行快速处理时。 值得注意的是,项目的实现除了需要正确的代码逻辑之外,还需要一个稳定的运行环境,包括安装有.NET框架以及相应的库依赖。此外,由于该项目使用了预训练的深度学习模型,因此需要一定的硬件资源,比如支持CUDA的GPU,以加速模型的推理过程。 "C# - 图片抠像 - PP.Matting.HRNET - 含模型 - 完整可运行"项目提供了一种高效的图像抠像解决方案,利用深度学习技术,能够实现无绿幕背景下的高质量图像抠像,对于需要进行图像编辑和处理的专业人士而言,这无疑是一个非常实用的工具。
2025-08-02 16:04:05 346.76MB 图像处理
1
matlab图像处理 基于扩展卡尔曼滤波(Extended Kalman Filter,EKF)的姿态估计算法用于估计飞行器或其他物体的姿态(即旋转状态),通常在惯性测量单元(IMU)和其他传感器的数据基础上进行。以下是该算法的基本原理: 1. 系统动力学建模 首先,需要建立姿态估计的动态系统模型。通常使用旋转矩阵或四元数来描述姿态,然后根据物体的运动方程(通常是刚体运动方程)建立状态转移方程。这个过程可以将物体的旋转运动与传感器测量值联系起来。 2. 测量模型 在 EKF 中,需要建立测量模型,将系统状态(姿态)与传感器测量值联系起来。通常,使用惯性测量单元(IMU)来获取加速度计和陀螺仪的测量值。这些测量值可以通过姿态估计的动态模型与姿态进行关联。 3. 状态预测 在每个时间步,通过状态转移方程对系统的状态进行预测。这一步通过使用先前的姿态估计值和系统动力学模型来预测下一个时间步的姿态。 4. 测量更新 在收到新的传感器测量值后,使用测量模型将预测的状态与实际测量值进行比较,并根据测量残差来更新状态估计。这一步通过卡尔曼增益来融合预测值和测量值,以更新系统的状态估计值。
2025-08-01 22:16:43 320KB matlab 图像处理
1
VESA显示流压缩(DSC)标准是一种算法规范,主要用途是压缩和解压图像显示流。该标准包括对压缩视频比特流的语法和语义规范,能够实现实时压缩、传输、解压缩和显示功能。DSC标准是专为实时系统设计的,因而对数据处理速度有较高要求。DSC标准并不指定传输层,而是由使用该标准的实用系统来遵循合适的传输规范,保证DSC流从源端成功传输到目的地。 DSC标准可以被应用在多种显示流接口中,这些接口可以是有线的,也可以是无线的。适用的场景包括但不限于移动应用主处理器与显示面板模块之间的接口、计算机图形输出与显示监视器之间的接口,以及消费电子源设备与电视等显示设备之间的接口。简而言之,DSC标准为不同设备间的显示流提供了一种有效的压缩和解压缩机制。 该标准由视频电子标准协会(VESA)制定,版本号为1.2a,发布日期为2017年1月18日。在本标准的内容用途部分,强调了其在压缩视频比特流方面的规定作用。在文档的摘要部分,列出了知识产权相关的声明,包括商标和专利信息。此外,文档还对支持本标准的单位和个人表示感谢,并记录了该文档的修订历史。 从技术角度来说,DSC标准对图像处理和色彩空间转换技术的应用非常关键。因为图像在压缩过程中需要优化数据以减小体积,同时还需要尽量保持原有的视觉质量。色彩空间转换是图像处理中的一个重要方面,它涉及到将图像从一种色彩空间转换到另一种,例如从RGB色彩空间转换到YCbCr色彩空间。而DSC标准则在此过程中确保了色彩的准确转换和图像的高质量还原。 VESA DSC标准的应用领域非常广泛,不仅限于个人电脑和笔记本电脑的显示系统,还包括移动设备、电视等消费电子,以及专业图形处理设备。DSC技术能够支持高分辨率和高帧率的视频内容的高效传输,是未来显示技术发展的一个重要方向。 此外,由于DSC标准是一个开放的标准,它鼓励了不同制造商和开发者之间的协作,推动了整个显示行业的技术进步。制造商们可以根据DSC标准设计兼容的显示硬件,而软件开发者则可以编写相应的软件来支持DSC技术的应用,如驱动程序和图像处理软件等。这样一来,用户就可以享受到更加丰富、更加高质量的视觉体验。 VESA显示流压缩(DSC)标准是当今显示技术中的一项关键性技术,它不仅提供了高效的数据压缩方法,而且为未来的显示技术发展奠定了基础。随着技术的不断演进和普及,DSC标准在图像显示领域的应用将越来越广泛,为用户带来更加优质、更加高效的视觉体验。
2025-07-31 13:23:48 3.81MB 视频编码 图像处理 色彩空间转换
1
项目细节: 首先载入源图像,并进行尺寸预处理。 载入源图像image并作拷贝为org,将image按原始h,w的比例大小设置为高度为500的图像。 进行边缘检测和轮廓检测 在灰度化->边缘检测->轮廓检测后,将轮廓按轮廓的面积进行排序(注意这里默认是顺序的即从小到大,我们需要从大到小排序,所以reverse = True),取面积最大的前5个轮廓,并用多边形逼近(cv.approxPolyDP)的方法将轮廓近似出来,因为检测的轮廓有圆形有长矩形,我们需要的检测的目标轮廓是四边形(类似于矩形)。所以我们经过筛选得到我们需要的四边形的坐标。 坐标的透视变换 由多边形逼近轮廓的方法得到的坐标 是每个轮廓逆时钟方向的各个顶点的坐标,而我们想要顺时针方向的各个顶点的坐标,所以需要先对轮廓坐标重新排序。接着需要求出四边形轮廓的高和宽,来创建一个dst数组:该数组为[[0,0],[width-1,0],[width-1,height-1],[0,height-1] 。将四边形轮廓坐标和dst输入到cv.getPerspectiveTransform 函数里,得到透视变换的M矩阵。接着将用M矩阵对原图像做透视变化,其中得出的warped的大小为(width,height),这样透视变换就做完了。 简单点说:首先读取两个坐标数组,计算变换矩阵;然后根据变换矩阵对原图进行透视变换,并输出到目标画布, OCR识别 在OCR识别之前要对待识别的图像进行预处理,即灰度二值化,接着利用ocr指令来识别。 源码: import cv2 as cv import numpy as np import pytesseract def order_point(pts): rect = np.zeros((4, 2), dtype = "float32") s = pts.sum(axis = 1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] diff = np.diff(pts,axis=1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] return rect def four_point_transfer(image,pts): rect = order_point(pts) (tl,tr,br,bl) = rect width1 = np.sqrt((tr[0]-tl[0])*(tr[0]-tl[0])+(tr[1]-tl[1])*(tr[1]-tl[1])) width2 = np.sqrt((br[0]-bl[0])*(br[0]-bl[0])+(br[1]-bl[1])*(br[1]-bl[1])) width = max(width1,width2) #python中有max函数和np.max函数,前者是比较两个数值的大小取最大值,后者是取出数组的最大值 height1 = np.sqrt((tr[0]-br[0])*(tr[0]-br[0])+(tr[1]-br[1])*(tr[1]-br[1])) height2 = np.sqrt((tl[0]-bl[0])*(tl[0]-bl[0])+(tl[1]-bl[1])*(tl[1]-bl[1])) height = max(height1,height2) dst = np.array([[0,0],[width-1,0],[width-1,height-1],[0,height-1]],dtype="float32") M = cv.getPerspectiveTransform(rect,dst) warped =cv.warpPerspective(image,M,(width,height)) return warped def resize(image,height=None): if height is None: return image else : h,w= image.shape[:2] #shape:h,w,channel image[h(row),w(col),channel] r = height/h width = int(w*r) #关于size函数参数的一般是(宽,高) image = cv.resize(image,(width,height),interpolation=cv.INTER_AREA) #还有resize(img,(宽,高)),即先列后行 return image #利用cv.bounding()得到x,y,width,height #其它情况一般都是先行后列(高,宽) #如shape得到参数,或者roi区域内部参数,建立新的Mat 都是先行后列 image = cv.imread("E:\opencv\picture\page.jpg") orig = image.copy() image = resize(image,height=500) ratio = orig.shape[0]/500 #边缘检测 image_gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY) image_gray = cv.GaussianBlur(image_gray,(5,5),0) image_edge = cv.Canny(image_gray,75,200) #轮廓检测 image_contours = cv.findContours(image_edge.copy(),cv.RETR_LIST,cv.CHAIN_APPROX_SIMPLE)[1] countours = sorted(image_contours,key=cv.contourArea,reverse=True)[:5] for c in countours: arc = cv.arcLength(c,closed=True) approx = cv.approxPolyDP(c,arc*0.02,True) if len(approx) == 4: screen_shot = approx break cv.drawContours(image,[screen_shot],-1,(0,0,255),2) warped =four_point_transfer(orig,screen_shot.reshape(4,2)*ratio) cv.imshow('warped_window',resize(warped,height=650)) warped =cv.cvtColor(warped,cv.COLOR_BGR2GRAY) scan = cv.threshold(warped,0,255,cv.THRESH_BINARY|cv.THRESH_OTSU)[1] cv.imwrite("E:/opencv/picture/scan.png",scan) cv.imshow("scan ",scan) scanstring = pytesseract.image_to_string(scan) print(scanstring) cv.waitKey(0) cv.destroyAllWindows() 在这个图像处理案例中,主要涉及了以下几个关键技术点: 1. 图像预处理: - **图像尺寸预处理**:通过`resize`函数调整图像尺寸,确保图像高度为500像素,保持原图像的宽高比例。这一步骤是为了统一处理不同大小的图像,使其适应后续的处理算法。 - **灰度化**:使用`cv.cvtColor`函数将彩色图像转换为灰度图像,简化图像特征,便于边缘检测和轮廓识别。 - **边缘检测**:采用Canny算法`cv.Canny`进行边缘检测,识别图像中的边界,帮助分离文字区域。 2. 轮廓检测与筛选: - **轮廓检测**:使用`cv.findContours`找出图像中的所有轮廓,`cv.RETR_LIST`确保获取所有独立的轮廓,`cv.CHAIN_APPROX_SIMPLE`压缩轮廓信息以节省内存。 - **轮廓排序与筛选**:按照轮廓面积进行降序排序,选择前五个最大的轮廓,这是因为文字区域通常比背景区域的面积更大。通过`cv.approxPolyDP`进行多边形逼近,去除非四边形轮廓,保留类似矩形的四边形轮廓,以精确选取文本区域。 3. 坐标变换与透视变换: - **坐标排序**:将轮廓坐标按照顺时针方向重新排序,这是为了满足`cv.getPerspectiveTransform`函数的需要,它需要按顺序的顶点坐标。 - **创建dst数组**:dst数组定义了目标四边形的四个顶点,即一个标准的矩形。 - **计算透视变换矩阵**:利用`cv.getPerspectiveTransform`得到将四边形轮廓坐标转换为dst矩形的透视变换矩阵`M`。 - **执行透视变换**:通过`cv.warpPerspective`函数,应用M矩阵对原图像进行透视变换,生成warped图像,使文字区域变为标准矩形。 4. OCR识别: - **预处理**:将warped图像转为灰度图像并进行二值化,使用`cv.threshold`和`cv.THRESH_BINARY|cv.THRESH_OTSU`进行自动阈值设定,提高文字识别的准确性。 - **OCR识别**:使用`pytesseract.image_to_string`对二值化后的图像进行文字识别,将图像转换为可读的文本字符串。 总结来说,这个案例展示了如何通过OpenCV库进行图像处理,包括尺寸调整、边缘检测、轮廓识别、坐标变换以及最终的OCR文字识别。这些步骤是图像分析和自动化文本提取的关键技术,常用于文档扫描、图像识别和信息提取等领域。
2025-07-30 21:48:04 21KB opencv python ocr
1
数据集是一个大规模的虹膜图像数据集,由中国科学院自动化研究所(CASIA)创建。该数据集包含来自 1000 名受试者的 20000 幅虹膜图像,每名受试者提供 20 幅图像。这些图像使用IKEMB-100 双眼虹膜相机采集,分辨率为 640×480 像素。数据集的特点:规模大:包含 1000 名受试者的虹膜图像,是首个公开的千人级虹膜数据集。图像质量高:使用先进的 IKEMB-100 相机采集,图像清晰,适合用于虹膜特征提取。多样性丰富:图像中存在多种类内变化,如眼镜佩戴、镜面反射等,增加了数据集的复杂性和实用性。虹膜识别算法研究:可用于开发和验证虹膜识别算法,包括图像预处理、特征提取、特征匹配等。分类与索引方法开发:适合用于研究虹膜特征的独特性,开发新的分类和索引方法。机器学习与深度学习:为深度学习模型(如卷积神经网络)提供丰富的训练数据,提升模型的准确性和鲁棒性。数据集为虹膜识别研究提供了宝贵的资源,帮助研究者深入探究虹膜特征的独特性和多样性,推动虹膜识别技术在生物特征识别领域的应用和发展。
2025-07-28 16:53:38 490.79MB 深度学习 机器学习 图像处理 计算机视觉
1
上述代码是使用HALCON软件编写的脚本,主要功能是利用光度立体技术对轮胎表面的文字进行识别 总的来说,这段代码通过光度立体技术计算轮胎表面的梯度,然后利用梯度信息计算表面曲率,并通过图像处理技术提取出文字区域。接着,使用极坐标变换对齐文字,最后使用OCR技术识别出文字内容。这种方法可以有效地从轮胎表面提取和识别文字信息,对于轮胎的自动识别和记录非常有用。
2025-07-18 11:10:02 731KB 图像处理 文字识别
1
stb-image.h是一个广泛使用的单文件库,专门用于图像加载,尤其在C语言编程社区中备受欢迎。该库支持多种流行图像格式的读取,包括但不限于BMP、TGA、PNG等,它通过一个单一的头文件提供接口,简化了图像处理功能的集成过程。开发者仅需下载stb_image.h文件,即可将其包含在自己的项目中,无需额外的库文件或复杂的安装过程。这使得stb-image.h成为那些追求项目轻量级、快速集成的开发者理想的选择。 该库之所以受到推崇,部分原因在于其简洁的API设计和高效的加载性能。它能够在不依赖第三方库的情况下,直接加载图像文件到内存中的数组,大大减少了项目的依赖和配置的复杂度。此外,stb-image.h也支持对加载图像进行简单的处理,如转换颜色空间、缩放大小等,虽然功能不是非常全面,但对于大多数基础的图像处理任务来说已经足够。 由于其便携性和易用性,stb-image.h在3D建模、游戏开发、图形渲染等领域得到了广泛应用。无论是开源项目还是商业产品,都能看到它的身影。在3D建模和游戏引擎中,图像处理是必不可少的一环,无论是纹理贴图、环境贴图还是动画帧的加载,stb-image.h都能够提供快速可靠的解决方案。 对于初学者或者对图像处理有基础需求的开发者而言,stb-image.h提供了一个很好的起点,因为它不需要深厚的图像处理知识就能快速上手。然而,对于需要进行复杂图像处理的场景,如医学成像、专业图像分析等,可能需要更为专业和功能丰富的图像处理库。 由于其开源性质,stb-image.h也在不断地被社区改进和扩展,虽然它的功能较为基础,但是稳定性和效率在实际应用中得到了验证。此外,由于只需要单一头文件,它也非常适合用于教学和快速原型开发。 在集成stb-image.h到项目中时,开发者需要遵循标准的C语言编译和链接流程。将头文件包含到源代码文件中后,即可通过定义的函数进行图像加载和处理。尽管stb-image.h本身不提供复杂的图像处理功能,但它能很好地与其他图像处理库一起工作,为开发者提供一个灵活的基础。 stb-image.h作为一款轻量级的图像加载库,为C语言项目提供了一个快速、方便的图像处理起点,尤其适合于那些对项目体积和加载速度有严格要求的应用场景。同时,它的开源性质和活跃的社区支持,保证了其功能的持续更新和问题的及时解决,使其成为一个值得信赖的工具。
2025-07-17 08:55:41 62KB 图像处理
1
内容概要:本文详细介绍了基于FPGA的车牌识别系统的Verilog实现方法。系统由OV5640摄像头采集图像并通过HDMI实时显示,同时对车牌进行识别并在画面上叠加红框和识别结果。主要内容涵盖硬件架构设计、图像采集状态机、RGB转HSV的颜色空间转换、边缘检测算法、字符分割与识别以及HDMI显示控制等多个关键技术环节。文中还提供了详细的代码片段和调试技巧,确保系统的稳定性和高效性。 适合人群:具备FPGA开发经验的研发人员,尤其是从事图像处理和嵌入式系统开发的技术人员。 使用场景及目标:适用于需要实时车牌识别的应用场景,如停车场管理、交通监控等。目标是提高车牌识别的准确率和速度,同时降低系统功耗和成本。 其他说明:文中提到的代码已在GitHub上开源,便于开发者参考和进一步优化。此外,文中还提到了一些常见的调试问题及其解决方案,帮助开发者更快地完成项目开发。
2025-07-08 18:08:05 1.03MB FPGA Verilog 图像处理 边缘检测
1
MIJ 提供了成像软件之间缺失的链接:ImageJ、Fiji 和 Matlab。 MIJ 是一个 Java 包 mij.jar,它提供了在 Matlab 数组中转换图像(2D)和体积(3D)的静态方法。 MIJ 还允许访问 ImageJ 的所有内置功能和 ImageJ 的第三方插件。 多亏了斐济团队,MIJ 现在通过集成在斐济的 Matlab 脚本 Miji.m 变得非常容易使用。 在 MIJ 中,ImageJ 充当 Matlab 的图像处理库。 参考Daniel Sage、Dimiter Prodanov、Jean-Yves Tinevez 和 Johannes Schindelin,“MIJ:使 ImageJ 和 Matlab 之间的互操作性成为可能”,ImageJ 用户和开发者大会,2012 年 10 月 24-26 日,卢森堡。 http://bigwww.epfl.ch/pub
2025-07-04 23:09:33 13KB matlab
1