YOLOv5与DeepSORT是两个在计算机视觉领域广泛应用的算法,主要负责目标检测和多目标跟踪。在本文中,我们将深入探讨这两个技术以及如何将它们结合用于汽车和行人的多目标跟踪,这对于智能交通系统、自动驾驶车辆以及安全监控等领域具有重要意义。 **YOLOv5详解** YOLO(You Only Look Once)是一种实时的目标检测系统,以其高效和准确而著称。YOLOv5是该系列的最新版本,由Joseph Redmon等人开发,经过多次迭代优化,性能更加强大。它采用了一种单阶段的检测方法,直接从输入图像中预测边界框和类别概率,大大减少了计算时间。YOLOv5引入了以下关键改进: 1. **数据增强**:使用HFlip、Resize、ColorJitter等技术,增强了模型的泛化能力。 2. **模型结构**:采用了更高效的neck设计,如Path Aggregation Network (PANet) 和 Fused Scale金字塔,提高特征融合和多尺度信息利用。 3. **损失函数**:优化了损失函数,如CIoU(Complete IoU),改进了边界框的预测精度。 4. **权重初始化**:使用更好的预训练模型,如COCO数据集,加速收敛。 **DeepSORT详解** DeepSORT是一种基于卡尔曼滤波器和匈牙利算法的多目标跟踪框架。它结合了深度学习模型(如ReID)来估计目标的外观特征,并利用这些特征进行跨帧匹配。其核心组件包括: 1. **特征提取**:通过一个预训练的深度网络(如ResNet或MobileNet)提取目标的外观特征。 2. **卡尔曼滤波**:对目标的运动状态进行预测和更新,以处理目标的短暂遮挡和运动模糊。 3. **相似度度量**:使用马氏距离计算不同帧间目标特征的相似性。 4. **匈牙利算法**:解决分配问题,确定最佳的一一对应关系,确保跟踪的稳定性。 **YOLOv5与DeepSORT结合** 将YOLOv5和DeepSORT结合,可以实现端到端的汽车行人多目标跟踪。YOLOv5首先检测出每一帧中的目标,然后DeepSORT负责在连续帧之间进行目标跟踪。具体流程如下: 1. **目标检测**:YOLOv5模型在输入图像上进行前向传播,输出每个目标的边界框、类别和置信度。 2. **特征提取**:DeepSORT从YOLOv5的输出中提取目标的特征表示。 3. **跟踪初始化**:使用卡尔曼滤波器预测上一帧的目标状态,并为新检测到的目标分配ID。 4. **匹配过程**:根据马氏距离计算当前帧与上一帧目标特征的相似度,使用匈牙利算法进行匹配。 5. **状态更新**:更新匹配成功的目标状态,对未匹配的目标创建新的跟踪。 6. **重复步骤2-5**:对于视频的每一帧,重复以上过程,实现持续的目标跟踪。 这种结合方法在实际应用中表现出了优秀的跟踪性能,尤其在目标密集、遮挡频繁的场景下,能够有效地维持目标的连续性,实现精确的计数和追踪。 总结来说,YOLOv5和DeepSORT的结合为汽车行人多目标跟踪提供了一个强大且实用的解决方案,不仅适用于学术研究,也在实际项目如毕设、课设中大有裨益。通过理解并掌握这两个算法的工作原理和结合方式,开发者可以构建出高效的目标跟踪系统,满足各种复杂场景的需求。
2025-05-12 10:53:24 245.04MB 目标跟踪
1
FairMOTVehicle A fork of FairMOT used to do vehicle MOT(multi-object tracking). You can refer to origin fork 车辆跟踪,效果如下,此测试未经过训练(Results of vehicle mot is as follows, the video seq has not been trained): 使用UA-DETRAC公开数据集训练FairMOT(Using UA-DETRAC as training dataset for vehicle tracking) UA_DETRAC是一个公开的车辆跟踪数据集, 共8万多张训练数据集,每一张图的每一辆车都经过了精心的标注。 训练方法(具体调用时,根据服务器目录, 修改自定义路径) (1). 使用gen_labels_detrac.py脚本
2025-04-27 12:48:47 20.01MB Python
1
PyTorch多目标跟踪库.zip ython和Pytorch中的多对象跟踪库 安装 环境:python 3.6.10,opencv 4.1.1,pytorch 1.3+ git clone https://github.com/nightmaredimple/libmot --recursive cd libmot / 点安装-r requirements.txt
2024-03-17 15:09:58 4.61MB PyTorch
1

针对一个扫描周期内单个目标可能产生多个量测的问题, 提出一种基于标签随机有限集的扩展算法. 结合脉冲扩展标签多伯努利(-GLMB) 滤波器和多量测模型, 推导出新的更新方程; 采用假设分解策略对关联过程进行降维, 避免了量测分组过程. 实验分析表明: 所提出算法能对目标数进行无偏估计, 在低探测概率条件下跟踪性能明显优于多量测概率假设密度(MD-PHD) 算法; 计算开销在量测较少时高于MD-PHD, 量测个数增加时增幅低于MD-PHD.

2024-02-06 00:08:26 219KB
1
UAVDT是一个具有大规模的挑战性的无人机检测和跟踪基准(即10小时原始视频中约8万帧的代表性帧),用于3项重要的基本任务,即目标检测(DET)、单目标跟踪(SOT)和多目标跟踪(MOT)。 数据集由无人机在各种复杂场景中捕获。本基准中关注的对象是车辆。使用边界框和一些有用的属性(例如,车辆类别和遮挡)对帧进行手动注释。 UAVDT基准由100个视频序列组成,这些视频序列是从城市地区多个地点的UAV平台拍摄的超过10小时的视频中选择的,代表各种常见场景,包括广场、主干道、收费站、高速公路、交叉口和T形交叉口。视频以每秒30帧(fps)的速度录制,JPEG图像分辨率为1080×540像素。 该数据集包含的是原始图片,不包括注释 参考: D. Du, Y. Qi, H.g Yu, Y. Yang, K. Duan, G. Li, W.g Zhang, Q. Huang, Q. Tian, " The Unmanned Aerial Vehicle Benchmark:
1
This is a beta release for a suite of MATLAB based RFS filtering/tracking codes.The "_common" subdirectory of shared functions should be added to your MATLAB path.Run the "demo" script to see a preconfigured example.
2023-05-15 16:08:38 622KB TheCommon 多目标跟踪 tracking
1
介绍隐马尔科夫模型中的前向后向、维特比和分段K-均值算法
2023-05-08 23:56:20 967KB 隐马尔科夫 前向 后向 维特比
1
JPDA 雷达目标跟踪算法matlab源程序,能实现两个匀速直线运动目标。 感谢原作者,希望对大家有所帮助 JPDA 雷达目标跟踪算法matlab源程序,能实现两个匀速直线运动目标。 感谢原作者,希望对大家有所帮助
2023-04-18 10:29:45 5KB JPDA 多目标跟踪 matlab源程序
1
为了减少老年人因跌倒而造成的伤害, 及时有效地识别跌倒行为, 提出了一种基于三轴加速度传感器的人体跌倒识别方法。首先将加速度传感器放置于人体腰腹位置, 采集人在运动时的加速度变化数据; 然后使用日常活动数据训练隐马尔科夫模型 (HMM), 利用老年人活动状态相对较少的特点, 从测量数据与HMM的匹配程度寻找“疑似”跌倒行为; 最后计算短暂时间内的身体倾角, 检测人体躺卧姿态, 完成跌倒识别。利用HMM和身体倾角识别跌倒, 解决了生活中缺乏跌倒数据训练样本的问题, 提高了某些近似行为的区分度。仿真结果表明, 该方法在有效识别跌倒行为的同时, 提高了正确率。
1
随着虚拟现实技术的发展,虚拟现实系统在越来越多的行业得到推广和应用,而人机交互技术是增强系统沉浸感、提升用户体验效果的关键技术之一。为实现利用手势交互技术进行虚拟场景控制的目的,基于隐马尔科夫模型(HMM)构建了手势识别模型,并对模型参数的设置进行了分析;基于Leap Motion研究了手势数据采集与分割方法,设计了手势识别系统技术框架;最后进行了仿真实验,95%以上的准确率说明了模型的有效性。
1