当前多目标追踪大多遵循了Tracking-by-detection范式完成跟踪任务。Tracking-by-detection范式将追踪任务分为两步完成:目标检测与数据关联。公式解读是针对“Global Transformer Tracking”这篇论文中对训练策略及推理的一些公式理解。
2022-11-05 21:22:20 11.38MB Multi-ObjectTra 目标跟踪
1
利用opencv的多目标追踪算法,实现对视频中鼠标选取的多个对象进行跟踪处理,算法可以自行选择,现为kcf算法
2022-07-08 11:10:13 12.45MB 计算机视觉
由目标位置点获得轨迹段,目标发生交叉时即断开,MATLAB代码
2022-06-28 06:12:29 7KB MATLAB代码 多目标追踪
1
中国软件杯多目标追踪
2022-04-06 03:11:14 18.15MB deepsort 多目标追踪、 Cascade_Rcnn
1
为了克服核相关滤波(KCF)只根据目标外观模型追踪时准确性低的不足,融入运动模型,计算了检测目标框和预测目标框的交并比(IOU)。通过匈牙利算法,确定了目标间的最优关联。KCF和IOU模型都具有快速响应的特点,因此算法可满足在线处理数据的要求。在公开的2DMOT2015、MOT16数据集上进行实验,将所提方法与其他优秀方法相比,在保证30 frame/s以上处理速度的同时,追踪准确性提高10%以上。
2022-03-11 21:32:46 7.4MB 机器视觉 多目标跟 核相关滤 交并比
1
1.代码原理 该程序逐个读取帧图片,并对帧图片逐个进行多行人检测、多目标追踪。该方法是在线方法,将逐个读取帧图片改为逐帧读取视频即可实现在线处理视频。 1.1 多行人检测。 使用gluoncv中的预训练模型faster_rcnn_fpn_bn_resnet50_v1b_coco实现多行人检测,这一步骤见detect.py。 1.2 多目标追踪。 使用sort算法实现多目标追踪,详见https://github.com/abewley/sort。 2.代码部署 2.1 配置环境。 安装python==3.6,安装requirements.txt中要求的库(代码运行实际用到的库可能少于该文件,因此建议根据代码安装所需要的库)。 2.2 准备数据。 有两种方法准备数据: 2.2.1 将A-data文件夹放入当前目录,A-data文件夹中为Track1 Track2等子文件夹,每个子文件夹中存有.jpg帧图片。 2.2.2 修改run.py的第97行,将input_folder改为A-data文件夹所在路径。 2.3 运行程序run.py。 2.4 程序输出。 程序运行时会打印处理进度及估计的剩余时间。 程序运行完成后,会在当前目录下生成output文件夹,文件夹中存有Track1 Track2等数据集对应的检测结果,.avi文件用于观察检测追踪效果,.txt文件是用于提交的文本文件。 3.调参 3.1 多目标检测模型的选择。 修改detect.py第10行(YOLO.__init__)即可,可选模型及其名称、效果详见gluoncv官网 3.2 sort算法参数的修改。 run.py第34行,参数含义见sort.py。 3.3 将sort改为deepsort。 详见https://github.com/nwojke/deep_sort。 TODO:经尝试,经deep_sort处理后的检测框位置有变形、偏移现象,待解决。 3.4 输入输出路径见run.__main__
1