在短距离无线通信中,无线节点或移动终端通常有低成本、小体积、低功耗的要求,因此无法使用复杂的预失真或补偿电路克服功放的非线性影响,这是无线节点或移动终端在上行链路中难以使用高阶QAM调制的重要原因之一。基于QAM矩形星座的特点,提出了一种K-means聚类的改进算法作为中央基站节点的高阶QAM解调算法。在发送信号受到较严重的功放非线性失真时,所提改进算法解调性能更优,算法复杂度更低。 在短距离无线通信中,高阶QAM(Quadrature Amplitude Modulation)调制由于其高传输效率而被广泛采用,但同时也面临着功率放大器(PA)非线性失真的挑战。由于无线节点和移动终端对成本、体积和功耗的严格限制,无法采用复杂的预失真或补偿电路来应对这一问题。为了解决这一难题,一种针对失真QAM信号的改进K-means聚类算法被提出,特别适用于中央基站节点的高阶QAM解调。 传统的K-means聚类算法主要用于数据挖掘和模式识别,而在通信领域,尤其是用于高阶调制的解调,这一应用并不常见。该改进算法的优势在于,在功放非线性导致QAM星座图严重失真的情况下,可以提供更优的解调性能,同时保持较低的算法复杂度。 在K-means解调过程中,关键步骤包括数据点的聚类和星座编号判决。原始的K-means算法可能因为“两星座一簇”或“一星座两簇”的情况导致误判,而改进算法则通过利用星座图的先验知识,比如矩形星座的结构,来更精确地选择初始聚类中心。对于矩形星座,算法首先估算数据点的分布范围,然后进行非均匀网格划分,结合理想星座图剔除无关点,最后选取最接近数据点的网格点作为初始聚类中心,确保每个星座点对应一个聚类中心,提高了解调的准确性。 具体实施上,算法会接收一组数据点的横纵坐标集合,根据QAM调制的阶数K和矩形星座的行数M进行处理。通过调整非均匀划分系数η,可以适应不同的失真程度,以达到最佳的解调效果。这种改进策略有效地降低了由于功放非线性导致的解调错误率,尤其在面对严重的失真时,解调性能优于常规方法。 该改进的K-means聚类算法为短距离无线通信中的高阶QAM解调提供了一种新的解决方案。它巧妙地利用了通信系统内的先验信息,降低了算法复杂度,同时提高了解调的准确性和鲁棒性,对于无线节点和移动终端的低功耗、低成本需求是一个理想的匹配。随着C-RAN架构的推广,这种算法有望在未来的无线通信系统中发挥重要作用,特别是在那些需要高效能、低功耗解调的场景中。
2025-04-13 21:00:56 577KB
1
摘 要: 介绍一种低失真、高精度可调( 频率和幅度) 正弦波发生器实现的方法, 对其原理、工艺及制作过程中出现的问题进行了详细的叙述, 特别是对稳幅、稳频、幅度调整和频率调节等功能进行了认真的分析论证, 说明了它可工作在比较恶劣环境中。   0 引 言   在许多电子系统中, 经常需要用到频率和幅度可调的正弦波信号作为基准信号或载波信号。通常正弦波信号主要通过模拟电路或DDS( direct digital synthe2sis) 等两种方式产生。相对于模拟电路, DDS 具有相位连续、频率分辨率高、转换速度快、信号稳定等诸多优点, 但是其不菲的价格使其在某些领域大材小用。在此介绍一种采用
2024-08-18 15:34:52 576KB
1
个人声明:仅供布局借鉴,不保证最终实物的使用效果,请依照原理图自己绘制。 一、任务:设计并制作一个晶体管放大器非线性失真研究装置。 二、要求 外接信号源输出频率10kHz、峰峰值20mV的正弦波作为晶体管放大器输入电压ui,要求输出无明显失真失真波形uo,且uo的峰峰值不低于2V,电源电压 ≤ 6v。 1、放大器能够输出无明显失真、“顶部失真”、“底部失真”、“双向失真”、“交越失真”的正弦波。 2、采用单个按键控制轮流输出以上五种波形并有相应的指示。 3、信号源输出频率50kHz、峰峰值2mV的正弦波作为晶体管放大器输入电压ui,要求输出无明显失真波形uo,uo的峰峰值不低于2V。 4、按格式要求撰写设计报告。设计报告主要内容: 1)方案论证:系统组成,比较与选择,方案描述。 2)电路设计:系统各部分电路原理图、原理分析,应结合电路设计方案阐述出现各种失真的原因,电路相关参数设计。 3)程序设计:若采用单片机控制,提供系统软件与流程图。 4)电路仿真:仿真电路图及仿真测试结果。 5)测试结果:完整测试结果列表,对测试结果分析。
2024-07-09 16:31:16 817KB
1
详细阐述了放大器非线性失真研究装置的制作过程,制作所用到的材料,实物完整后的效果展示图。 个人声明:仅供借鉴,不保证最后的实物效果。 报告中所完成的功能: 外接信号源输出频率10kHz、峰峰值20mV的正弦波作为晶体管放大器输入电压ui,要求输出无明显失真失真波形uo,且uo的峰峰值不低于2V,电源电压 ≤ 6v。 1、放大器能够输出无明显失真、“顶部失真”、“底部失真”、“双向失真”、“交越失真”的正弦波。 2、采用单个按键控制轮流输出以上五种波形并有相应的指示。 3、信号源输出频率50kHz、峰峰值2mV的正弦波作为晶体管放大器输入电压ui,要求输出无明显失真波形uo,uo的峰峰值不低于2V。
2024-06-13 21:11:24 3.43MB
1
用LabVIEW编制一个完整应用软件,完成以下功能: 1、产生一个正弦波,叠加一个噪声信号,从界面上可以调整噪声和信号的幅度、频率等参数,此信号作为后续分析的信号源; 2、显示信号的时域波形,点击按钮可以显示信号的幅度谱、功率谱 3、图形上可以显示光标,具有峰值跟踪功能,同时将峰值频率、幅度显示在界面上。 4、点击按钮可以计算显示信号的失真度(THD)、信噪比(SNR)、各次谐波的频率和幅度;
2024-05-21 19:38:17 25KB 谐波失真
xilin dpd 资料,是学习和使用预失真非常宝贵的资料,值得收藏
2024-03-19 17:17:20 2.12MB
1
这是另一个改进的关于数字预失真功能仿真的matlab程序,效果不错,希望对大家有所帮助。
2023-11-26 12:02:57 690KB 数字预失真
图 7.11 噪声谱图的设定 图 7.12 噪声谱图 7.4 谐波失真的仿真设置 我们还可以用“PSS analysis”来仿真电路的“Harmonic Distortion”,即谐波失真。这时,“PSS analysis”的设置区别于震荡电路的设置,因为这时电路是有输入信号的。我们以图 7.13 中的全 差分运算放大器为例说明如何来仿真谐波失真
2023-07-26 15:28:44 4.97MB cadence IC设计 教程
1
目前一般手机的相机都能达到800万像素,像我的Galaxy Nexus才500万像素,拍摄的照片也有1.5M左右。这么大的照片上传到服务器,不仅浪费流量,同时还浪费时间。 此demo 解决了Android压缩图片到100K以下并保持不失真的高效方法
2023-04-27 16:12:52 711KB Android 上传图片 压缩图片 不失真
1
汪博士 解读PMP考试6-无水印,便于打浏览阅读,文字清楚内容丰富,对应PMbook .
2023-04-18 13:53:11 46.54MB PMP
1