CAD主流电气原理图,通俗易懂,合适工控爱好者学习,多套主流PLC电气图纸,有常见的污水处理厂控制,变频器控制,中央空调控制以及三菱,西门子,欧姆龙常用plc等,大量实践成功应用案例,还包括常用图库。 CAD技术在电气工程领域中占据着举足轻重的地位,尤其是在制作电气原理图方面。电气原理图是一种用于表示电气设备、元件及其连接关系的图形化文件,它能够清晰地展示电路的工作原理和结构组成。对于工控爱好者和专业工程师而言,掌握主流电气原理图的阅读与设计是必备技能之一。 本资源集合了多套主流PLC电气图纸,涵盖了污水处理厂控制、变频器控制、中央空调控制等多个应用场景。污水处理厂是城市环境保护的重要设施,其控制系统的设计复杂且要求精确,涉及到各种传感器、执行器以及泵类设备的协同工作。变频器在工业控制中应用广泛,用于调节电机的运行速度和输出功率,其控制电路的设计对于提高能源利用效率和设备保护至关重要。中央空调系统控制则需要考虑到温度、湿度等多种参数的实时监测与调节,实现舒适环境的同时,还要保证能效比的最优化。 在这些控制系统的电气原理图中,通常会包括三菱、西门子、欧姆龙等品牌的PLC(可编程逻辑控制器)。PLC是一种用于工业自动化控制的数字运算操作的电子设备,它可以接收输入信号,根据用户编程的控制逻辑进行计算,并输出控制信号,驱动机械动作或调节设备状态。三菱、西门子、欧姆龙是全球知名的工业自动化产品制造商,它们的产品广泛应用于各类自动化控制系统中,对于PLC的深入理解和掌握是工控领域专业人员的必备技能。 本资源不仅仅提供图纸和案例,还包括了大量实践成功应用案例,帮助学习者在理论与实践之间建立联系。同时,资源中还包含了常用图库,这些图库是电气工程师在设计过程中会频繁使用到的标准化图形组件和符号库,它们可以显著提高设计效率,减少重复工作。 此外,这些图纸还采用了CAD软件制作,CAD(计算机辅助设计)技术能够提供精确的图形绘制、修改和分析工具,对于电气原理图的设计具有重要意义。通过CAD软件,设计师可以进行精确的尺寸标注、层次管理、材料清单生成等操作,极大地提升了电气设计的质量和效率。 对于工控爱好者来说,通过学习和研究这些主流电气原理图,不仅可以提高自己的专业技能,还能够加深对工业控制系统内部工作原理的理解,进而在实际工作中更好地解决复杂问题,设计出更加高效和可靠的电气控制系统。 CAD主流电气原理图资源为工控爱好者提供了一个学习和实践的平台,让他们能够通过真实案例和标准图库,深入掌握电气控制系统设计的核心知识和技能。无论是在理论学习还是实际应用中,这些资源都能够为工控领域的人士提供宝贵的学习资料和参考。
2026-01-12 16:00:11 2.66MB
1
内容概要:本文介绍了基于PSA-TCN-LSTM-Attention的时间序列预测项目,旨在通过融合PID搜索算法、时间卷积网络(TCN)、长短期记忆网络(LSTM)和注意力机制(Attention)来优化多变量时间序列预测。项目通过提高预测精度、实现多变量预测、结合现代深度学习技术、降低训练时间、提升自适应能力、增强泛化能力,开拓新方向为目标,解决了多维数据处理、长时依赖、过拟合等问题。模型架构包括PID参数优化、TCN提取局部特征、LSTM处理长时依赖、Attention机制聚焦关键信息。项目适用于金融市场、气象、健康管理、智能制造、环境监测、电力负荷、交通流量等领域,并提供了MATLAB和Python代码示例,展示模型的实际应用效果。; 适合人群:具备一定编程基础,对时间序列预测和深度学习感兴趣的工程师和研究人员。; 使用场景及目标:① 提高时间序列预测精度,尤其在多变量和复杂时序数据中;② 实现高效的参数优化,缩短模型训练时间;③ 增强模型的自适应性和泛化能力,确保在不同数据条件下的稳定表现;④ 为金融、气象、医疗、制造等行业提供智能化预测支持。; 其他说明:本项目不仅展示了理论和技术的创新,还提供了详细的代码示例和可视化工具,帮助用户理解和应用该模型。建议读者在实践中结合实际数据进行调试和优化,以获得最佳效果。
2026-01-12 10:43:31 41KB LSTM Attention 时间序列预测
1
基于深度学习的个性化携程美食数据推荐系统-d7fq1jtw【附万字论文+PPT+包部署+录制讲解视频】.zip
2026-01-11 08:36:37 29.94MB python
1
标题基于深度学习的个性化携程美食数据推荐系统研究AI更换标题第1章引言介绍个性化美食推荐的研究背景、意义、国内外现状及论文方法与创新点。1.1研究背景与意义阐述个性化美食推荐在旅游业中的重要性及研究价值。1.2国内外研究现状分析国内外个性化美食推荐系统的研究进展与不足。1.3研究方法以及创新点概述本文采用的研究方法及创新点。第2章相关理论介绍深度学习及个性化推荐系统相关理论。2.1深度学习基础阐述深度学习基本原理、神经网络模型及训练方法。2.2个性化推荐系统理论介绍个性化推荐系统的基本概念、分类及评价方法。2.3美食数据特征提取分析美食数据的特征提取方法,包括文本、图像等。第3章个性化携程美食数据推荐系统设计详细介绍个性化携程美食数据推荐系统的设计方案。3.1系统架构设计给出系统的整体架构、模块划分及功能描述。3.2深度学习模型选择选择适合美食推荐的深度学习模型,如CNN、RNN等。3.3推荐算法设计设计基于深度学习的个性化美食推荐算法。第4章数据收集与处理介绍数据收集、处理及特征工程的方法。4.1数据收集方法阐述数据来源及收集方式,包括用户行为数据、美食数据等。4.2数据预处理介绍数据清洗、去重、标准化等预处理方法。4.3特征工程阐述特征提取、选择及转换的方法。第5章实验与分析对个性化携程美食数据推荐系统进行实验验证和性能分析。5.1实验环境与数据集介绍实验所采用的环境、数据集及评估指标。5.2实验方法与步骤给出实验的具体方法和步骤,包括模型训练、测试等。5.3实验结果与分析从准确率、召回率等指标对实验结果进行详细分析,对比不同方法。第6章结论与展望总结本文的研究成果,并展望未来的研究方向。6.1研究结论概括本文的主要研究结论和创新点。6.2展望指出本文研究的不足之处以及未来在美食推荐领域的研究方向。
2026-01-11 08:34:14 68.08MB python
1
标题Python基于深度学习的个性化携程美食数据推荐系统研究AI更换标题第1章引言介绍个性化推荐系统在携程美食领域的应用背景、意义、研究现状以及论文的研究方法和创新点。1.1研究背景与意义阐述个性化推荐在携程美食数据中的重要性及其实际应用价值。1.2国内外研究现状概述国内外在个性化推荐系统,尤其是在美食推荐领域的研究进展。1.3论文方法与创新点简要说明论文采用的研究方法以及在该领域内的创新之处。第2章相关理论介绍深度学习和个性化推荐系统的相关理论基础。2.1深度学习基础阐述深度学习的基本原理、常用模型及其在推荐系统中的应用。2.2推荐系统概述介绍推荐系统的基本框架、主要算法和评估指标。2.3个性化推荐技术详细描述基于用户画像、协同过滤等个性化推荐技术的原理和实现方法。第3章基于深度学习的个性化推荐系统设计详细阐述基于深度学习的个性化携程美食数据推荐系统的设计思路和实现方案。3.1数据预处理与特征工程介绍数据清洗、特征提取和转换等预处理步骤,以及特征工程在推荐系统中的作用。3.2深度学习模型构建详细描述深度学习模型的构建过程,包括模型结构选择、参数设置和训练策略等。3.3推荐算法实现介绍如何将训练好的深度学习模型应用于个性化推荐算法中,并给出具体的实现步骤。第4章实验与分析对基于深度学习的个性化携程美食数据推荐系统进行实验验证,并对实验结果进行详细分析。4.1实验环境与数据集介绍实验所采用的环境配置、数据集来源以及数据集的预处理情况。4.2实验方法与步骤详细说明实验的具体方法和步骤,包括模型训练、验证和测试等过程。4.3实验结果与分析从准确率、召回率、F1值等多个角度对实验结果进行量化评估,并结合实际应用场景进行结果分析。第5章结论与展望总结论文的研究成果,并指出未来可能的研究方向和改进措施。5.1研究结论概括性地阐述论文的主要研究结论和创新成果。5.2未来研究方向根据当前研
2026-01-11 08:20:56 92.93MB django python mysql vue
1
本文详细介绍了YOLOv11目标检测算法的参数调优方法,涵盖了模型结构、训练、检测和部署四大核心模块的参数体系。文章首先概述了YOLOv11的参数分类,包括模型结构参数(网络深度、宽度、特征融合方式)、训练参数(学习率、优化器、数据增强策略)、检测参数(预测置信度、NMS阈值)和部署参数(模型量化、加速)。随后,文章深入讲解了各模块的具体参数配置和调优策略,如骨干网络参数调整、颈部网络优化、学习率调度选择、数据增强参数设置等。针对不同应用场景(如小目标检测、实时检测、长尾分布数据集)提供了专门的调参方案。此外,文章还介绍了超参数自动优化方法、常见问题解决方案以及性能评估指标。最后,通过实例解析了网络配置文件的编写规则,为开发者提供了全面的调参指导。 YOLOv11的目标检测算法以其在速度和精度方面的均衡表现,在业界广受欢迎。为了进一步提升模型性能,调整参数是至关重要的一步。本文将深入探讨YOLOv11的参数调优策略,涵盖模型构建、训练过程、检测效果和模型部署的各个方面。 在模型结构参数方面,YOLOv11通过调整网络深度、宽度和特征融合方式,来适应不同的目标检测任务。网络深度和宽度的增加通常有助于提高模型的特征提取能力,但同时也会带来计算量的增加。特征融合方式则涉及如何有效地结合不同层次的特征信息,以增强模型对细粒度目标的识别能力。 训练参数的选择是影响模型学习效果的关键。学习率、优化器以及数据增强策略的选择对训练过程的稳定性以及最终模型的性能有着决定性影响。YOLOv11通常使用如SGD、Adam等优化器,并且通过适当的学习率调度来防止训练过程中的过拟合和欠拟合。数据增强策略则通过引入变化多端的训练样本,提高模型的泛化能力。 在检测参数方面,预测置信度和非极大值抑制(NMS)阈值是两个关键参数。预测置信度决定了一个检测框是否为正样本,而NMS阈值则用于消除重叠的检测框,保留置信度最高的一个。这两个参数的适当配置,可以有效提升检测的准确性。 部署参数关注的是模型的部署效率和精度。模型量化和加速技术的应用,使得YOLOv11能够在不同的硬件平台上运行,同时保持较高的检测速度和精度。这对于实时检测和嵌入式设备部署尤为重要。 针对特定的应用场景,如小目标检测、实时检测以及面对长尾分布数据集时,YOLOv11提供了专门的参数调整方案。这些方案通常涉及到对模型结构或训练策略的特定调整,以适应不同应用场景的需求。 除了手动调整这些参数外,超参数自动优化方法也是提升模型性能的有效途径。这些方法通过算法自动探索参数空间,找到最优的参数组合,从而节省大量的人力和时间成本。 在处理实际问题时,难免会遇到各种挑战。因此,本文还介绍了一些常见问题的解决方案,以及如何利用性能评估指标来衡量模型性能。 文章最后通过实例分析了网络配置文件的编写规则。通过细致地解析配置文件的每一个参数,本文为开发者们提供了一套全面的调参指导,帮助他们更加精确地控制YOLOv11模型的训练和检测行为。 无论是在学术研究还是工业应用中,YOLOv11凭借其独特的参数调优策略,都能够为用户带来高效率和高准确率的目标检测体验。通过对这些策略的深入了解和应用,开发者们可以更好地驾驭YOLOv11,发挥其在目标检测领域的最大潜力。
2026-01-10 20:04:09 6KB 目标检测 深度学习 YOLO系列
1
本文针对光伏板积灰问题,提出了一套完整的解决方案。首先通过数据清洗与预处理,统一了四个光伏电站的小时级数据。随后构建了积灰影响指数(DII)模型,量化积灰对发电效率的影响,并引入电价与清洗成本进行经济性分析。研究结果表明,该模型能有效识别积灰严重时段,为清洗决策提供科学依据。文章详细阐述了数据清洗流程、DII建模方法及清洗策略优化算法,最终形成了一套可推广的光伏智能运维体系。 光伏电站的正常运转对于清洁能源的稳定输出至关重要。在光伏电站的日常运维中,积灰问题是影响发电效率的主要因素之一。由于灰尘等颗粒物覆盖在光伏板表面,会显著减少其对光能的吸收能力,进而降低发电量。因此,及时检测积灰情况并进行有效清洗是提高光伏电站发电效率的关键。 为解决这一问题,文章提出了一套完整的解决方案,包括数据清洗与预处理、积灰影响指数模型构建、经济性分析以及清洗策略优化算法。对来自四个光伏电站的小时级数据进行了统一处理,确保了数据的一致性和准确性。数据清洗与预处理是模型构建和分析的基础,可以去除数据中的噪声和异常值,保证后续分析的可靠性。 接着,文章通过建立积灰影响指数模型,量化了积灰对光伏板发电效率的影响。DII模型是一个重要的创新点,它能够准确反映积灰的程度,并预测其对发电量的具体影响。通过DII模型,运维人员能够识别出哪些时段积灰情况较为严重,从而为采取清洗行动提供科学依据。 经济性分析是该方案的另一重要组成部分,文章引入了电价和清洗成本,对清洗积灰的经济效益进行了全面评估。这一分析有助于决策者在保证发电效率的同时,权衡清洗成本,实现经济利益的最大化。 在清洗策略方面,文章提出了清洗策略优化算法,该算法结合了DII模型与经济性分析的结果,为光伏板的清洗工作提供了优化路径。通过对不同清洗策略进行模拟和比较,能够帮助运维人员选择最优的清洗时机和方式,从而提高光伏板的发电效率并降低运营成本。 最终,文章通过上述方法,形成了一套可推广的光伏智能运维体系。该体系不仅能够提高光伏电站的发电效率,还能降低运维成本,同时对于整个光伏行业的可持续发展具有重要意义。 在数据科学和技术层面,文章的应用涉及了数学建模、光伏发电、数据清洗和机器学习等多个领域。通过这些领域的交叉融合,为光伏运维提供了创新的技术手段。数据建模和机器学习技术在处理大量数据、识别模式和预测未来趋势方面展现出巨大优势,而数据清洗则是确保模型准确性的关键步骤。这些技术的应用使得文章提出的解决方案更具科学性和实用性。 文章的研究成果不仅具有理论意义,而且具有很强的实践价值,能够直接应用于光伏电站的实际运维工作中,提高运维效率和发电性能,降低因积灰问题带来的损失。此外,其推广的可能性也为光伏电站的智能管理提供了新的思路和工具。 随着智能技术的不断进步,光伏电站的自动化和智能化水平将会越来越高。本文的研究成果为光伏电站的智能运维体系提供了有力支撑,有助于推动光伏行业的技术革新和升级。未来,随着相关技术的不断发展和完善,光伏智能运维将会在提高能源利用率、降低成本和保护环境等方面发挥更大的作用。
2026-01-09 14:14:22 19.07MB 数学建模 光伏发电 数据清洗 机器学习
1
4.2 自举程序选择 下图显示了自举程序选择机制。 图 6.STM32F03xx4/6 器件的自举程序选择 4.3 自举程序版本 下表列出了 STM32F03xx4/6 器件自举程序版本。 MS35015V1 GPIO IWDG SysTick USARTx 0x7F USARTx USARTx BL_USART_Loop 表 7.STM32F03xx4/6 自举程序版本 自举程序版本 号 说明 已知限制 V1.0 初始自举程序版本 对于 USART 接口,当发送 Read Memory 或 Write Memory 命令且 RDP 电平有效时,将发 送两个连续的 NACK 信号,而不是 1 个 NACK 信号。
2026-01-09 07:22:03 3.84MB STM32 自举模式
1
本文详细介绍了如何对YOLO11模型进行热力图可视化,以增强模型的可解释性和改进有效性。文章首先阐述了热力图可视化在深度学习研究中的重要性,包括帮助理解模型决策、定位模型缺陷、提升模型可解释性、支持跨模型比较、辅助模型调优以及增强论文说服力等方面。随后,文章提供了具体的代码实现步骤,包括如何在ultralytics文件夹下新建gradcam.py文件,并加载模型进行热力图生成。最后,文章推荐了作者的专栏,该专栏专注于YOLO11的深入解析和改进策略,并定期更新前沿技术分享和实战经验。 热力图可视化是深度学习研究中的重要工具,尤其在目标检测领域,它能显著提升模型的可解释性。YOLO11模型作为一种先进的目标检测模型,通过热力图的可视化,可以直观地展示模型在识别和定位目标时的注意力分布,进而增强模型的透明度和用户对模型性能的理解。在模型的热力图中,颜色的深浅代表了模型对于图像特定区域的关注程度,颜色越深表示模型对该区域的关注越大,反之则越小。通过分析这些热力图,研究者和工程师可以更清晰地了解模型识别的决策过程,发现模型在处理特定类型的对象时可能存在的偏差或错误,并据此进行优化。例如,如果热力图表明模型在某些特定的背景区域有异常高的响应,这可能意味着模型在此类区域存在过拟合现象。进一步的分析和调整将有助于改进模型的泛化能力,从而提升模型的整体性能。 此外,热力图可视化在支持跨模型比较方面也具有重要作用。不同的模型或模型版本在相同的输入数据上可能会产生不同的热力图,通过对这些热力图的比较分析,研究者可以直观地看出不同模型的优势和不足。这种视觉化的比较方法对于模型的设计和选择提供了直观的辅助。在模型调优过程中,热力图同样发挥着至关重要的作用。通过观察热力图的变化,可以有效地监控调优过程中模型对输入数据的关注点变化,以评估调优策略是否有效。 YOLO11模型在目标检测领域具有广泛应用,其热力图可视化教程不仅可以帮助研究人员和工程师深入理解模型的工作原理,还能够指导他们在实际应用中更加有效地部署和调优YOLO11模型。为了便于学习者实际操作,文章提供了一份可运行的源码,详细介绍如何通过编程实现YOLO11模型的热力图可视化。通过创建gradcam.py文件并在ultralytics文件夹下加载模型,用户可以轻松生成所需的热力图,从而深入分析模型行为。 文章最后还推荐了作者的专栏,该专栏致力于YOLO11模型的深入解析以及改进策略的探讨。专栏不仅会定期分享前沿的技术研究和实战经验,还会为读者提供一系列关于模型优化的实用技巧。这为YOLO11模型的学习者和实践者提供了一个宝贵的学习和交流平台。
2026-01-09 04:08:58 6.2MB 深度学习 目标检测 模型可视化
1
《SQL即查即用》这本书提供了大量的SQL查询脚本,旨在帮助读者快速理解和应用SQL语言。作为数据库管理和分析的重要工具,SQL(Structured Query Language)在软件开发、数据分析、业务智能等多个领域都扮演着核心角色。这本书的源码部分无疑为学习者提供了实战演练的宝贵资源。 SQL的基本概念包括数据定义(DDL,Data Definition Language)、数据操作(DML,Data Manipulation Language)、数据查询(DQL,Data Query Language)和数据控制(DCL,Data Control Language)。在《SQL即查即用》中,读者可以学习如何使用DDL来创建、修改和删除数据库表结构,DML用于插入、更新和删除数据,DQL则用于检索和查询数据,而DCL则涉及权限管理和访问控制。 书中可能涵盖了以下SQL知识点: 1. **基本查询**:包括SELECT语句,学会如何选取特定列、行和表,以及如何使用WHERE子句进行条件过滤。 2. **聚合函数与GROUP BY**:学习如何使用SUM、AVG、COUNT、MAX和MIN等函数对数据进行汇总,并配合GROUP BY语句按指定列进行分组。 3. **排序与分页**:ORDER BY用于结果集的排序,LIMIT或OFFSET用于实现分页查询,这对于数据量大的场景尤其重要。 4. **连接查询**:JOIN操作是将多个表的数据结合在一起的关键,包括INNER JOIN、LEFT JOIN、RIGHT JOIN和FULL JOIN。 5. **子查询**:嵌套查询使得可以在一个查询中使用另一个查询的结果,增强查询的灵活性。 6. **视图**:创建视图可以简化复杂的查询逻辑,提供一种抽象的数据访问方式。 7. **索引**:理解索引的作用和类型(如B树索引、哈希索引),并学会如何创建和优化索引来提升查询性能。 8. **事务处理**:学习SQL的事务特性,包括ACID(原子性、一致性、隔离性和持久性)原则,以及如何使用COMMIT、ROLLBACK和SAVEPOINT。 9. **存储过程与触发器**:掌握如何编写和调用存储过程,以及如何利用触发器自动化执行特定操作。 10. **数据库设计与范式理论**:理解关系数据库设计的基本原理,如第一范式(1NF)、第二范式(2NF)和第三范式(3NF),以及BCNF(Boyce-Codd范式)。 通过《SQL即查即用》的实践练习,读者可以快速提升SQL技能,不仅能够熟练地进行数据查询,还能深入理解数据库的工作原理,从而在实际工作中更加高效地运用SQL。无论是初学者还是经验丰富的开发者,这本书都能提供宝贵的指导和启发。
2026-01-07 23:02:04 115.26MB sql
1