"基于遗传算法与蚁群算法的多配送中心车辆路径优化研究:可调整配送中心数目与车辆载重率的MATLAB代码实现",遗传算法多配送中心车辆路径优化,蚁群算法多配送中心车辆路径优化,多个配送中心,多中心配送mdvrptw.带时间窗的多配送中心车辆路径优化。 可修改配送中心数目。 多配送中心车辆路径 [1]多配送中心[2]带有车辆载重率的计算[3]matlab代码数据可及时修改。 ,遗传算法; 蚁群算法; 多配送中心; 车辆路径优化; 时间窗; 载重率计算; MATLAB代码。,多中心车辆路径优化:考虑时间窗与载重率计算
2025-10-28 17:59:08 1.08MB
1
内容概要:本文详细介绍了在Pytorch环境下实现的一种基于深度学习模型的可学习小波变换方法。文中首先解释了小波变换的基本概念,包括离散小波变换(DWT)和连续小波变换(CWT),以及它们在信号处理和图像处理中的广泛应用。接着,重点讨论了如何将小波变换与深度学习相结合,在Pytorch框架下构建一个自适应优化算法框架。该框架能够在训练过程中自动从小波变换中学习到数据的最佳表示方式,并根据目标函数进行优化。文章还提供了一段简化的代码示例,演示了如何在实际项目中实现这一方法。最后,作者对未来的研究方向进行了展望,强调了这种方法在提高数据处理效率方面的巨大潜力。 适合人群:对深度学习和小波变换有一定了解的研究人员和技术开发者。 使用场景及目标:适用于需要对复杂信号或图像数据进行高精度分析和处理的应用场景,如医学影像分析、音频处理、地震数据分析等。目标是通过结合深度学习和小波变换的优势,提升数据处理的准确性和效率。 其他说明:本文不仅提供了理论上的探讨,还给出了具体的实现代码,有助于读者快速上手并在实践中验证所学内容。
2025-10-22 15:11:43 410KB
1
二维连续小波变换是现代信号处理领域中一个极为重要的工具,它在图像处理、模式识别、以及复杂信号分析中扮演着重要角色。本文研究的核心在于探讨基于二维连续小波变换的奇异性检测方法,即研究如何通过小波变换来有效识别图像或其他信号中的奇异点或奇异区域。 在深入研究之前,首先需要了解什么是奇异性。在信号处理中,奇异点指的是信号中不连续或变化异常剧烈的点。这些点往往携带着信号重要的特征信息,例如边缘、角点等。奇异性检测,即检测信号中的这些不规则区域,对于理解信号的局部特性至关重要。 二维连续小波变换是一种将信号在时频平面上展开的数学方法,通过选择合适的小波基函数可以对信号进行多尺度的分析。在二维情况下,它能够同时对图像的行和列进行分析,从而揭示图像中的局部特征。连续小波变换相比于离散小波变换,可以提供更平滑的尺度变化,因此在处理连续信号时具有优势。 在基于二维连续小波变换的奇异性检测方法研究中,主要关注点是如何选择合适的小波函数以及如何确定变换的最优尺度。小波函数的形状、宽度以及衰减速率都会对变换结果产生影响。而最优尺度的选择则依赖于信号本身的特性和所需的奇异性检测精度。通常,尺度越大,信号的时频分辨率越低,但对信号的平滑程度越高;反之亦然。 奇异性检测的方法可以分为两类:基于模极大值的方法和基于能量的方法。基于模极大值的方法通过追踪小波变换系数的局部最大值来定位奇异点;而基于能量的方法则通过分析小波变换系数的能量分布来进行检测。在二维情况下,这些方法可以应用在图像的边缘检测、纹理分析等领域,用于医学图像处理、卫星图像分析等实际问题中。 本研究的重要内容之一是探索两种或多种不同小波基函数在奇异性检测中的性能比较。通过实验分析,可以找出在特定应用场景下最有效的小波变换方法。此外,研究还可能涉及如何通过优化算法来自动选择最优的小波基函数和变换尺度,以及如何将这种方法推广到多维信号的奇异性检测中。 由于压缩包内文件列表暂无信息,具体研究的实现细节、实验数据、以及研究成果等都无法提供。但是可以预见的是,本研究将为二维连续小波变换的奇异性检测方法提供理论基础,并可能推动相关技术在实际应用中的发展。 二维连续小波变换的奇异性检测方法研究对于提高信号与图像处理技术的精确度和效率具有重要意义。通过深入探索和优化小波变换方法,可以更好地理解和分析信号的局部特性,为各种实际问题的解决提供有力的技术支持。
2025-10-21 20:34:25 636KB
1
内容概要:本文介绍了基于GADF(格拉姆角场)和Transformer的轴承故障诊断模型。首先解释了GADF的作用及其在捕捉轴承旋转角度变化中的重要性,然后探讨了Transformer如何通过自注意力机制对GADF生成的图像进行分析,从而实现故障识别和分类。文中还提及了小波变换(DWT)和短时傅立叶变换(STFT)两种额外的数据转换方法,它们能提供时间-频率双域表示和局部频率变化捕捉,丰富了数据表达方式。最后,文章展示了具体代码实现和验证过程,强调了模型的可调性和优化潜力。 适合人群:从事机械设备维护、故障诊断的研究人员和技术人员,尤其是对深度学习和信号处理有一定了解的人群。 使用场景及目标:适用于需要对复杂机械设备进行高效故障检测的工业环境,旨在提升设备运行的安全性和可靠性。 其他说明:附带完整的代码和说明文件,便于读者理解和复现实验结果。
2025-09-22 23:47:00 913KB
1
### 小波理论基础及其应用 #### 一、小波理论概述 小波理论是一种用于信号处理和图像分析的强大工具,它在多个领域内都有着广泛的应用,如图像压缩、声音处理、地震数据处理等。小波理论的核心在于利用小波变换来分析数据,通过将数据分解成不同频率成分,从而实现对复杂信号的有效处理。 #### 二、《Wavelet Theory: An Elementary Approach With Applications》简介 《Wavelet Theory: An Elementary Approach With Applications》是一本非常适合初学者学习的小波理论入门书籍。该书由David K. Ruch与Patrick J. Van Fleet共同编写,并由Wiley出版社出版。本书不仅提供了小波理论的基础知识,还详细介绍了如何将这些理论应用于实际问题中,旨在帮助读者建立起从小波理论基础知识到实际应用的完整框架。 #### 三、小波变换基本概念 **1. 连续小波变换(CWT)** 连续小波变换是小波理论中的一个重要概念,它允许我们将一个信号表示为不同尺度和位置的小波函数的线性组合。对于任意信号\( f(t) \),其连续小波变换定义为: \[ W_f(a,b) = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{+\infty} f(t)\psi^*\left(\frac{t-b}{a}\right) dt \] 其中,\( a \)表示尺度参数,\( b \)表示平移参数,\( \psi^* \)是小波函数的复共轭。 **2. 离散小波变换(DWT)** 离散小波变换是连续小波变换的一种简化版本,它通过选择特定的尺度和平移值来减少计算量。离散小波变换通常被用于数字信号处理中,因为它可以有效地应用于有限长度的信号。 #### 四、小波理论的应用实例 **1. 图像压缩** 小波变换在图像压缩方面有着显著的优势。通过对图像进行多分辨率分析,可以将图像分解为不同频率的子带。这些子带可以被进一步压缩,同时保持图像的主要特征不变。 **2. 声音处理** 在声音处理领域,小波变换可以帮助识别声音信号中的重要特征,比如噪声消除和语音识别等。通过对声音信号进行频谱分析,可以更准确地提取出有用的信息。 **3. 地震数据分析** 地震学是小波理论应用的另一个重要领域。通过对地震信号进行小波分析,科学家们能够更精确地了解地下结构的信息,这对于地震预测和资源勘探至关重要。 #### 五、本书特点及阅读建议 《Wavelet Theory: An Elementary Approach With Applications》一书的特点在于其深入浅出的解释方式,非常适合没有深厚数学背景的学习者。书中包含了大量的示例和练习,有助于读者巩固所学知识并加深理解。 对于希望学习小波理论的初学者来说,建议按照章节顺序逐步学习,并尝试自己动手完成书中的练习。此外,还可以结合实际项目进行实践操作,以更好地掌握小波理论的应用技巧。 #### 六、总结 《Wavelet Theory: An Elementary Approach With Applications》作为一本面向初学者的小波理论教材,不仅涵盖了小波理论的基本概念,还详细介绍了其在多个领域的应用案例。通过学习本书,读者不仅可以掌握小波理论的基础知识,还能学会如何将这些理论应用于解决实际问题中。无论是对于学生还是专业人士而言,这本书都是一本非常有价值的参考资料。
2025-09-08 16:51:37 17.92MB 小波变换
1
本文探讨了蚁群算法在自动化立体仓库拣选路径优化中的应用,旨在解决现有自动化立体仓库在优化管理和调度方面的不足。自动化立体仓库是现代企业物流系统中不可或缺的组成部分,其特点在于高效的空间利用率、快速的货物存取作业以及机械化、自动化的仓库操作。尽管其硬件设备、自动控制和通讯技术已经十分完善,但如何提高仓库的工作效率,尤其是在不增加额外设备投资的前提下,优化拣选路径成为了一个亟待解决的问题。 蚁群算法是一种模拟自然界蚂蚁觅食行为的启发式算法,它通过模拟蚂蚁在寻找食物路径过程中释放的信息素来实现对最短路径的搜索。算法中的蚂蚁个体在选择路径时会考虑信息素的浓度和路径的可见度。在蚁群算法中,每个路径上的信息素浓度会根据路径的好坏而进行相应的更新。通过不断地迭代搜索,算法最终能够寻找到接近最优解的路径。 文章中首先对自动化立体仓库的概念和特点进行了介绍,指出了其在存储量大、占地面积小、操作时间短、机械化自动化等方面的优势。同时,文章分析了自动化立体仓库在优化管理、调度方面所面临的挑战,并强调了优化拣选路径的重要性。 随后,文章详细介绍了蚁群算法的基本原理和数学模型,包括路径选择的随机转移概率公式、信息素的局部更新和全局更新机制。信息素局部更新机制确保蚂蚁在城市间转移时,能够根据路径信息素的浓度来调整转移概率,而全局更新机制则是在所有蚂蚁完成一次搜索后,仅对路径最短的蚂蚁留下的信息素进行加强。这种局部和全局信息素更新机制结合的方式,有利于算法更快地收敛至最优解。 在本文的研究中,蚁群算法被应用于固定货架堆垛机拣选路径的优化问题。利用Matlab软件编程求解堆垛机拣选货物的旅行商问题(TSP),并将蚁群算法应用于该问题中,以期找到最短的拣选路径。通过实验分析,蚁群算法相较于其他优化方法在自动化立体仓库拣选路径优化方面具有更高的效率和更好的应用前景。 蚁群算法在自动化立体仓库拣选路径优化中的应用,不仅能够提升拣选作业的效率和准确性,还能有效降低运营成本。通过将这一算法与自动化立体仓库的实际工作相结合,可以为仓库管理提供科学、高效的决策支持。未来,随着算法本身的进一步优化和硬件技术的不断发展,蚁群算法在自动化立体仓库中的应用前景将会更加广阔。
2025-08-04 01:12:35 225KB 首发论文
1
以自动化立体仓库拣选作业为研究对象,根据实际情况,分析自动化立体仓库拣选作业的工作特点: 巷道堆垛 机每次拣选作业只能对一个托盘进行操作;当巷道堆垛机运行到拣选作业区且货单物品被拣选后,巷道堆垛机将托盘送 回原货位。基于自动化立体仓库拣选作业的工作特点, 建立了以巷道堆垛机拣选作业运行时间最短为目标的数学模型, 最后采用蚁群算法进行优化求解, 得出最短运行时间, 实例证明该模型和算法是切实可行的, 能有效的提高立体仓库拣 选作业效率。 ### 基于蚁群算法的立体仓库拣选作业优化 #### 一、研究背景与意义 随着现代工业和物流业的发展,自动化立体仓库作为高效、精确存储与拣选物资的关键设施,在各种大型仓库和物流中心中发挥着越来越重要的作用。自动化立体仓库不仅能够大幅度提高仓库的空间利用率,还能显著提升拣选作业的效率与准确性。其中,拣选作业作为自动化立体仓库运作的核心环节之一,其效率直接影响到整体物流系统的性能。 #### 二、自动化立体仓库拣选作业特点 自动化立体仓库中的拣选作业主要通过巷道堆垛机完成。巷道堆垛机是一种能够在立体仓库的巷道内移动,并能够沿着垂直方向升降的设备,用于存取货物。其工作特点主要包括: 1. **单次操作限制**:巷道堆垛机每次拣选作业只能处理一个托盘,这意味着对于每一批拣选任务,都需要进行多次往返操作。 2. **托盘返回要求**:当巷道堆垛机运行至拣选作业区并将所需货物拣选完成后,还需要将空托盘送回原货位,以便后续使用。 这些特点决定了自动化立体仓库拣选作业的复杂性和挑战性。 #### 三、数学模型的建立 为了优化拣选作业的过程,研究者们通常会建立数学模型来模拟拣选过程,并以此为基础寻求最优解决方案。针对自动化立体仓库拣选作业的特点,可以建立以下数学模型: 1. **目标函数**:以巷道堆垛机的拣选作业运行时间为最小化目标。这涉及到计算巷道堆垛机在拣选过程中所需的总时间,包括寻找目标货位的时间、拣选货物的时间以及将托盘送回原位的时间。 2. **约束条件**:考虑到托盘的唯一性和巷道堆垛机的操作特性,模型还需要包含一系列约束条件,例如每个托盘只能被拣选一次、巷道堆垛机在同一时刻只能在一个货位操作等。 #### 四、蚁群算法的应用 蚁群算法(Ant Colony Optimization, ACO)是一种启发式的优化算法,灵感来源于蚂蚁寻找食物路径的行为。在自动化立体仓库拣选作业优化问题中,蚁群算法可以通过模拟蚂蚁在寻找最短路径过程中的信息素更新机制,来寻找最优或近似最优的拣选路径。 1. **算法原理**:蚁群算法通过模拟蚂蚁群体在寻找食物过程中释放的信息素来指导其他蚂蚁选择路径,从而实现路径的优化。 2. **应用步骤**: - 初始化参数,包括信息素浓度、蚂蚁数量等。 - 模拟蚂蚁在不同货位间的移动,根据信息素浓度和启发式信息确定下一个移动位置。 - 更新信息素浓度,强化优质路径上的信息素,减弱较差路径上的信息素。 - 重复以上过程直至满足终止条件,例如达到最大迭代次数或找到足够好的解决方案。 #### 五、案例验证与结果分析 通过对实际案例的应用验证,采用蚁群算法优化的拣选作业模型能够在较短时间内找到最优或近似最优的拣选路径,显著缩短了巷道堆垛机的运行时间,提高了拣选作业的整体效率。 #### 六、结论 基于蚁群算法的自动化立体仓库拣选作业优化方法,能够有效应对拣选作业中出现的各种复杂情况,通过合理的路径规划减少不必要的等待时间和移动距离,从而提高整个自动化立体仓库的运作效率。未来还可以进一步结合机器学习等先进技术,不断提升拣选作业的智能化水平。
2025-08-04 01:11:03 149KB 蚁群算法 立体仓库 拣选作业
1
基于matlab的 蚁群算法的优化计算——旅行商问题(TSP)优化-内含数据集和源码.zip
2025-07-15 15:01:20 3KB matlab 数据集 源码
1
西储大学数据集连续小波变换时频分析图像的知识点主要包括以下几个方面: 美国凯斯西储大学(Case Western Reserve University,简称CWRU)在多个领域拥有世界领先的科研实力,包括生物医学工程、材料科学、电机工程等。该大学的数据集是围绕上述领域研究过程中收集的大量实验数据,这些数据集被广泛用于模式识别、数据分析、机器学习等领域。 连续小波变换(Continuous Wavelet Transform,CWT)是时间频率分析的一种有效工具,可以用于提取信号在不同时间和频率上的信息。与傅里叶变换相比,小波变换能够提供更精细的时频局部化特性,尤其适合于分析非平稳信号。在处理CWRU数据集时,连续小波变换能够帮助研究者捕捉到信号在各个时刻的频率变化情况,为研究信号的动态特性提供了便利。 通过连续小波变换技术,可以将CWRU数据集转换成时频图像数据集。时频图像是一种可视化技术,它通过颜色深浅或亮度来表示信号在不同时间和频率上的能量分布。这种图像使得复杂信号的时间和频率特征变得直观,便于分析和解释。在电机系统故障诊断、生物医学信号分析等领域,时频图像能够辅助专业人员识别信号的异常变化,从而进行有效的故障检测和诊断。 生成时频图像数据集的过程需要专业的数据分析软件和编程工具,比如MATLAB或者Python的scipy和numpy库。在数据处理过程中,需要对原始信号进行预处理,如去除噪声、滤波等,以确保小波变换结果的准确性。接着,选择合适的小波基函数对信号进行连续小波变换,并绘制出时频图像。 根据上述文件信息,压缩包内的文件名暗示了数据集的来源和处理步骤。其中,“1747739956资源下载地址.docx”可能包含着下载西储大学数据集的详细信息,如网址、数据集的结构和内容描述,以及可能需要的访问权限和密码等。文件“doc密码.txt”则可能包含了打开或访问上述文件的密码信息,这些信息对于获取和处理数据集至关重要。 将这些时频图像数据集用于科研和工程实践中,可以帮助工程师和科学家们更好地理解复杂的信号处理问题,提高问题解决的效率和准确性。时频分析图像不仅在学术研究领域有着重要的应用价值,也在工业生产、医疗诊断、环境监测等多个实际领域中发挥着越来越大的作用。
2025-07-06 10:33:29 51KB
1
CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像加密: DNA混沌图像加密、Arnold置乱图像加密解密、Logistic+Tent+Kent+Hent图像加密与解密、双随机相位编码光学图像加密解密 正交拉丁方置乱图像加密解密、RSA图像加密解密、小波变换DWT图像加密解密、混沌结合小波变换图像加密
2025-07-03 20:35:42 13KB matlab
1