yolov5/yolov8/yolo11/yolo目标检测数据集,人爬墙识别数据集及训练结果(含yolov8训练结果与模型),1016张标注好的数据集(2类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用 2个类别:没爬墙,在爬墙。 效果参考展示:https://blog.csdn.net/m0_37302966/article/details/151864777 更多资源下载:https://blog.csdn.net/m0_37302966/article/details/146555773
2025-10-30 17:10:49 122.32MB yolov5数据集 yolo数据集
1
一、基础信息 数据集名称:塑料目标检测数据集 图片数量: 训练集:138张图片 分类类别: Plastic(塑料) 标注格式: YOLO格式,包含边界框和类别标签,适用于目标检测任务。 数据格式: 图片来源于实际采集,常见图像格式如JPEG。 二、适用场景 塑料物品识别系统开发: 数据集支持目标检测任务,帮助构建AI模型自动检测塑料物品,应用于垃圾分类、回收自动化系统等场景。 工业制造检测: 在生产线或质量控制中,识别塑料材料或部件,提升制造效率和准确性。 环境废物监测: 用于识别塑料污染或废物,支持环境清理项目或可持续性研究。 三、数据集优势 精准标注: 标注采用YOLO格式,边界框定位精确,类别标签一致,确保模型训练可靠性。 任务适配性强: 兼容主流目标检测框架(如YOLO),可直接加载使用,支持快速模型开发。 实用性强: 数据集专注于塑料检测类别,提供真实场景图像,便于模型学习和实际部署应用。
2025-10-29 11:00:53 10.56MB 目标检测数据集 yolo
1
一、数据集基础信息 数据集名称:箱子目标检测数据集 图片数量: - 训练集:70张图片 - 验证集:20张图片 - 测试集:10张图片 - 总计:100张图片 分类类别: box(箱子):表示各种箱子或包装盒对象。 标注格式: YOLO格式,包含边界框和类别标签,适用于目标检测任务。 数据格式:图片文件,格式如JPEG/PNG。 二、数据集适用场景 物流与仓储自动化: 数据集支持目标检测任务,可用于开发箱子检测系统,优化仓库物流中的货物跟踪和库存管理。 制造与包装质量控制: 在生产线中检测产品包装箱,确保包装完整性并提升自动化效率。 零售库存管理: 集成到智能零售系统中,自动识别货架或运输中的箱子商品,辅助库存盘点和供应链优化。 教育与研究实验: 作为计算机视觉教学资源,支持目标检测算法的基准测试和模型训练研究。 三、数据集优势 标注精准高效: 采用YOLO格式标注,边界框坐标精确,便于直接加载到深度学习框架进行训练。 类别专注简化: 专注于单一类别“箱子”,减少模型训练复杂度,加速开发周期。 任务适配性强: 兼容主流目标检测模型(如YOLO系列),支持从原型到部署的快速迭代。 实用价值突出: 提供真实场景的箱子检测数据,适用于物流、制造等领域的实时AI应用开发。
2025-10-27 23:01:30 2.9MB 目标检测数据集 yolo
1
数据集介绍:聚合物电缆缺陷检测数据集 数据集名称:聚合物电缆缺陷检测数据集 数据量: - 训练集:91张图片 标注类别: - 电缆缺陷(单一类别,标签ID:0) 标注格式: - YOLO格式,包含边界框及多边形顶点坐标(*.txt标注文件) - 支持不规则缺陷区域的精确标注 数据来源: - 工业电缆设备真实场景图像,聚焦聚合物电缆表面异常检测 电力设施智能巡检系统: - 构建无人机/机器人自动识别电缆损伤的AI模型,替代人工高危巡检 - 应用于输变电网络维护,实时预警绝缘层破裂等安全隐患 制造业质量管控: - 集成至电缆生产线视觉检测系统,实现出厂产品的缺陷自动化筛检 - 提升能源设备制造良品率与合规性 设备寿命预测研究: - 支持基于视觉特征的电缆老化程度分析研究 - 为电力设施预防性维护策略提供数据支撑 专业场景聚焦: - 专为能源设备缺陷检测优化,覆盖电缆表面断裂、变形等关键缺陷类型 - 标注同时包含矩形框与多边形坐标,适配目标检测与不规则区域识别任务 工业级标注精度: - 标注点密集覆盖缺陷边缘(如DH-cdienpolymettrach015示例含17个顶点) - 支持模型学习复杂几何特征的识别能力 即用性强: - 原生YOLO格式兼容主流框架(YOLOv5/v8, MMDetection等) - 可直接迁移至输电线巡检机器人、工厂质检设备等嵌入式系统
2025-10-23 12:27:03 6.04MB 目标检测数据集 yolo
1
在计算机视觉领域,目标检测是一个核心任务,它涉及到识别出图像中所有感兴趣的物体,并精确地标定出它们的位置。本文所讨论的“人车目标检测-目标检测数据集”正是为了解决这一问题而存在的。该数据集主要面向的是城市交通场景中的人和车这两种目标,由于它们在日常交通监控中具有极高的重要性,因此对它们的检测能力要求甚高。 目标检测数据集通常包含了大量带有标签的图像,这些图像用于训练和测试目标检测模型。在此数据集中,“测试集”一词意味着该部分数据主要用于评估已训练模型的性能,即模型在未知数据上的表现情况。测试集通常不会用于模型的训练过程,以保证评估结果的公正性和有效性。 关于数据集的具体内容,虽然没有提供详细的图像列表,但从“test_images”这个名字可以推测,这些图像文件很可能包含城市道路、交叉路口或者停车场等典型场景,其中人和车作为目标对象被标注。每个目标对象周围会有边界框(bounding box)标记,这些边界框不仅标识出目标的位置,还指明了目标在图像中的大小和方向。 在构建目标检测数据集时,数据的多样性和代表性至关重要。数据集需要涵盖不同的天气条件、光照情况、视角以及目标大小和遮挡情况。此外,数据集的标注质量直接影响着模型训练的效果。标注需要准确无误,才能确保模型能够正确学习到目标的特征。 利用这样的数据集进行目标检测研究,可以应用各种成熟的算法,包括但不限于基于区域的检测算法(如R-CNN系列)、基于回归的检测算法(如SSD、YOLO系列)以及更先进的基于深度学习的检测方法。这些方法通过从大量带标注的图像中学习,能够自动识别出新图像中的人和车。 目标检测的应用场景非常广泛,包括但不限于智能交通系统、视频监控、自动驾驶汽车、移动设备应用等。在这些应用中,快速准确地检测到人和车的存在对于整个系统的决策至关重要。例如,在自动驾驶系统中,准确的行人和车辆检测是确保行车安全的基础;在交通监控中,车辆检测可以帮助实现交通流量的统计和分析。 “人车目标检测-目标检测数据集”为研究者们提供了一个专门针对行人和车辆的检测任务的测试平台。通过使用该数据集,研究人员可以测试和优化他们的目标检测算法,以期在现实世界的应用中达到更优的性能。
2025-10-16 13:36:00 32.03MB 目标检测 数据集
1
数据集缺陷类型:划痕、凹痕、裂缝共1456张。 文件包括: Annotation:xml文件格式,共1456张。 images:所有缺陷图片jpg,1456张。 test:测试集图片jpg,100张。 val:验证集图片jpg,113张。 txt:标注图片YOLO格式的txt文件,1456个txt。 YOLO(You Only Look Once)是一种流行的实时目标检测系统,它通过单一神经网络直接从图像像素到边界框坐标和类别概率的映射来进行目标检测。YOLO的性能卓越,它可以在保证较高准确度的同时,实现快速的检测速度。这种特性使其在需要实时处理的应用场景中表现尤为出色,如自动驾驶、视频监控、工业检测等领域。 本数据集针对轴承缺陷检测而构建,包含1456张标注清晰的图像,这些图像涵盖了轴承在使用过程中可能出现的三种主要缺陷类型:划痕、凹痕和裂缝。这些缺陷类型对于轴承的性能和寿命有重要影响,能够被及时检测出来对于保障机械设备的稳定运行具有重要意义。 数据集中的图像全部以jpg格式存储,包括了标注图像和未标注图像。标注图像配有YOLO格式的标注信息,即xml文件和txt文件。xml文件格式用于描述图像中每个目标的位置和类别信息,而txt文件则包含了YOLO格式的标注数据,这种格式通常包含类别ID、目标中心点坐标以及目标的宽度和高度信息,使得YOLO模型能够直接读取并用于训练和预测。除此之外,数据集还划分为训练集、测试集和验证集。训练集用于模型的学习过程,测试集用于评估模型性能,验证集则用于模型调优和参数设置。 利用这样的数据集进行训练,目标检测模型能够学会识别和分类轴承缺陷。这对于提高轴承质量控制和预防性维护具有重要的实际应用价值。由于轴承是各种机械设备中的关键部件,因此缺陷检测的准确性直接关系到整个系统的安全性和可靠性。 值得注意的是,数据集的质量直接影响着模型训练的效果。因此,在收集数据时,要确保图像多样性、清晰度以及标注的准确性,以减少过拟合的风险,并提高模型的泛化能力。此外,合理的数据划分也是必要的,确保测试集和验证集能够有效地反映模型在未见数据上的表现,从而达到准确评估模型性能的目的。 本数据集为研究和开发基于YOLO的轴承缺陷检测模型提供了一个良好的起点。通过这个数据集,研究人员可以训练出更为精确和高效的检测模型,以应对工业生产中轴承缺陷检测的挑战,从而提高工业生产的自动化水平和产品的质量保证。
2025-10-13 15:10:26 158.67MB 目标检测 数据集 yolo
1
学生行为StudentBehavior​​Dataset 数 据 集共1810张学生课堂 图像,包括“ Focused 专注听讲”、“ Reading 阅读 ”、“ Hand Movement 手部动作 ”、 “ Head Down 低头 ”、 “ Looking Aside 侧视 ”和“ Sleeping 睡觉 ” 等六种 类型,每张图像 的大小为640像素x640 像素。图像数据集划分为1268 张图像作为训练集,361 张图像作为验证集,181张图像作为测试集。
2025-10-12 20:55:00 561.5MB 数据集
1
数据集名称:课堂行为检测数据集(基于YOLOv8的目标检测) 数据集描述: 本数据集面向基于 YOLOv8 的课堂行为目标检测任务,旨在实现对学生在教室内典型行为(如举手、睡觉、阅读、书写、使用手机、交谈、转头等)的精确识别与定位。数据采集自真实教学场景,涵盖多个时间段、角度与环境条件,具备良好的多样性、代表性和实际应用价值,适用于智慧教育、课堂行为分析、教学管理等多个场景。 数据特点: 标注类型:采用YOLO格式,提供边界框坐标与行为类别标注; 行为类别:覆盖典型课堂行为(支持自定义扩展类别); 图像数量:训练集-3192张; 分辨率:统一/多种分辨率(如有特殊说明可补充); 适用模型:适配YOLOv8及主流目标检测模型; 应用场景:智慧教室、教学管理、课堂行为分析、人机交互等。 应用价值: 该数据集可广泛应用于智慧教育领域,有助于构建基于计算机视觉的课堂行为分析系统,提升教学过程的可视化管理水平,实现课堂纪律自动评估、学生参与度分析等功能,助力教育信息化发展。
2025-10-11 17:17:41 265.08MB 目标检测 yolo 课堂行为
1
一、基础信息 数据集名称:发票目标检测数据集 图片数量: - 训练集:57张图片 - 验证集:8张图片 - 测试集:6张图片 分类类别: Invoice(发票):专注于文档图像中发票区域的检测与定位。 标注格式: YOLO格式,包含边界框坐标,适用于目标检测任务。 数据格式:JPEG图片,来源于真实文档扫描场景。 二、适用场景 财务文档自动化处理: 构建AI模型自动检测和定位图像中的发票区域,适用于报销系统、电子会计软件等场景,提升票据处理效率。 物流与供应链管理: 集成到文档扫描应用中,快速识别货运单据中的发票信息,优化仓储和运输流程。 OCR预处理系统: 作为前置模块,精准定位发票区域后提取关键文本(如金额、日期),增强光学字符识别的准确性。 教育与实践工具: 用于计算机视觉教学,演示目标检测在文档处理中的实际应用,适合算法入门训练。 三、数据集优势 标注精准与一致性: 所有图片统一采用YOLO格式标注边界框,确保发票定位的精确性,减少模型训练噪声。 任务适配性强: 专注于单一类别(发票)检测,数据高度聚焦,可直接用于目标检测算法(如YOLO系列)的快速部署。 实际场景覆盖: 数据源于多样化发票样本,涵盖不同版式和背景,增强模型在真实文档环境中的泛化能力。 易用性与兼容性: 标注格式兼容主流深度学习框架(如PyTorch、TensorFlow),支持即插即用,降低开发门槛。
2025-10-09 15:00:53 1.34MB 目标检测 yolo
1
数据集介绍:蚊子检测标注数据集,图片是单只蚊子在纸张上的场景,图片清晰,含有增强(通过图片旋转、明暗度对比、目标状态改变),下载时请务必考虑清楚。 数据集格式:VOC格式+YOLO格式 压缩包内含:3个文件夹,分别存储图片、xml、txt文件 JPEGImages文件夹中jpg图片总计:7651 Annotations文件夹中xml文件总计:7651 labels文件夹中txt文件总计:7651 标签种类数:1 标签名称:["mosquito"] 每个标签的框数: mosquito 框数 = 7660 总框数:7660 图片清晰度(分辨率:像素):清晰 图片是否增强:否 标签形状:矩形框,用于目标检测识别
2025-09-29 15:49:07 161.71MB 数据集
1