### 开关电源EMI设计小结 #### 一、开关电源EMI源解析 开关电源在运行过程中会产生电磁干扰(EMI),这些干扰主要来源于内部元件的快速切换以及外部环境的影响。 1. **功率开关管**:功率开关管在工作过程中处于高速开关状态,其电压变化率(dv/dt)和电流变化率(di/dt)都非常高,这使得功率开关管成为产生EMI的主要源头之一。由于快速变化的电流和电压,功率开关管不仅能够产生电场耦合干扰,还能产生磁场耦合干扰。 2. **高频变压器**:高频变压器中的漏感会导致电流快速变化(di/dt),这种变化会产生较强的磁场耦合干扰。因此,高频变压器也是EMI的一个重要来源。 3. **整流二极管**:整流二极管在反向恢复过程中会产生高dv/dt,进而导致强烈的电磁干扰。这一过程通常发生在二极管从正向导通状态转变为反向截止状态时,反向恢复电流的断续会在引线电感和杂散电感中产生较高的电压变化率。 4. **PCB设计**:PCB板的设计质量直接影响到EMI的抑制效果。良好的PCB布局可以有效地减少EMI源之间的耦合,从而降低EMI的产生。 #### 二、EMI传输通道分类及特点 EMI可以通过传导和辐射两种方式传播,具体包括: 1. **传导干扰**: - 容性耦合:通过电容性连接,如寄生电容,将干扰信号从一个电路传到另一个电路。 - 感性耦合:通过互感效应将干扰信号从一个电路传递到另一个电路。 - 电阻耦合:主要包括: - 公共电源内阻产生的电阻传导耦合。 - 公共地线阻抗产生的电阻传导耦合。 - 公共线路阻抗产生的电阻传导耦合。 2. **辐射干扰**: - 在开关电源中,元器件和导线可以视为天线,产生电磁波。根据电偶极子和磁偶极子理论,二极管、电容、功率开关管可以被视为电偶极子;电感线圈则被视为磁偶极子。 - 当存在屏蔽体时,需要考虑屏蔽体的缝隙和孔洞对电磁波的泄露影响。 #### 三、EMI抑制的九大措施 针对开关电源EMI的产生机理,可以采取以下九项措施来有效抑制EMI: 1. **减小dv/dt和di/dt**:通过优化开关管的驱动电路或者使用软开关技术来降低电压和电流变化率,从而减少EMI的产生。 2. **压敏电阻的应用**:利用压敏电阻来吸收瞬态过电压,保护电路免受浪涌电压的损害。 3. **阻尼网络抑制过冲**:在电路中加入RC阻尼网络来抑制电压和电流的过冲现象。 4. **采用软恢复特性的二极管**:选用具有较慢反向恢复时间的二极管,减少反向恢复过程中产生的EMI。 5. **有源功率因数校正**:通过采用有源功率因数校正(APFC)技术来改善电源效率,减少谐波失真。 6. **电源线滤波器的设计**:合理设计电源线滤波器来过滤掉高频干扰。 7. **合理的接地处理**:良好的接地设计可以有效减少EMI的传播。 8. **有效的屏蔽措施**:通过使用屏蔽材料和技术来隔离干扰源。 9. **合理的PCB设计**:优化PCB布局,如正确布置电源和地线、合理布线等,以减少EMI。 #### 四、高频变压器漏感控制 1. **选择合适磁芯**:选择合适的磁芯材料,降低变压器的漏感。 2. **减小绕组间的绝缘层**:使用更薄的绝缘材料,如“黄金薄膜”,既能保证足够的绝缘性能,又能降低漏感。 3. **增加绕组间的耦合度**:通过优化绕组结构来提高耦合度,从而降低漏感。 #### 五、高频变压器的屏蔽 为了防止高频变压器的漏磁对周边电路造成干扰,可以采用屏蔽带来屏蔽高频变压器的漏磁场。屏蔽带通常由铜箔制成,并进行接地处理。此外,还可以通过使用环氧树脂或玻璃珠胶合剂来固定磁芯,减少高频变压器在工作过程中产生的噪音。 通过对以上知识点的学习,我们可以了解到开关电源EMI设计的关键要素及其解决方案,这对于提高开关电源的性能和可靠性具有重要意义。
2025-11-24 17:23:53 68KB 开关电源 基础知识 课设毕设
1
在开关电源设计中,EMI(电磁干扰)是影响电源性能和电磁兼容性(EMC)的关键因素。EMI干扰源主要来自于开关电源内部的功率开关管、整流二极管和高频变压器等元器件。这些元器件在高速切换时会产生高dv/dt和di/dt,即电压和电流的快速变化,从而导致电磁干扰。外部环境中的电网抖动、雷击和外界辐射也会对开关电源产生干扰。为了设计出符合EMC标准的开关电源,以下是一些重要的设计经验和知识点。 开关电源的EMI源包括功率开关管、整流二极管和高频变压器。功率开关管在开启和关闭的过程中,其电压和电流变化率(dv/dt和di/dt)非常高,因此它既是电场耦合也是磁场耦合的主要干扰源。高频变压器的漏感在磁芯关闭时会产生快速的电流变化,从而成为磁场耦合的重要干扰源。整流二极管的反向恢复特性会产生较高的电压变化率,导致电磁干扰。此外,PCB板设计也极其关键,因为它充当了上述干扰源之间的耦合通道。良好的PCB设计能够有效抑制EMI。 在开关电源EMI传输通道方面,可以将其分为传导干扰和辐射干扰。传导干扰的传输通道主要包括电源内阻、公共地线和公共线路阻抗所引起的电阻传导耦合。辐射干扰的传输通道则涉及到把元器件和导线假设成天线,利用电偶极子和磁偶极子理论进行分析。在没有屏蔽体的情况下,电磁波的传输通道是空气,而在有屏蔽体的情况下,则需考虑屏蔽体的缝隙和孔洞。 为了抑制EMI,可以采取以下几大措施:减小dv/dt和di/dt以降低干扰峰值和斜率;合理应用压敏电阻以降低浪涌电压;使用阻尼网络抑制过冲;采用具有软恢复特性的二极管降低高频段的EMI;实施有源功率因数校正和其他谐波校正技术;设计合理的电源线滤波器;进行合理的接地处理;采取有效的屏蔽措施;以及执行合理的PCB设计。 对于高频变压器而言,控制漏感是解决EMI问题的重要手段。这可以通过在电气设计和工艺设计上选择合适的磁芯和减小绕组间的绝缘层厚度来实现。同时,增加绕组间的耦合度也有助于减小漏感。此外,为了防止漏磁对周围电路的干扰,可以采用铜箔屏蔽带绕在变压器外部并接地。对于高频变压器的噪声(如啸叫、振动)问题,可以通过用环氧树脂粘接磁心或使用“玻璃珠”胶合剂来加固磁心,抑制相对位移的产生,从而减少噪声。 在开关电源设计中,必须通过优化元器件选择、布局、PCB设计、滤波和屏蔽技术等方法来有效控制EMI,确保电源的稳定性和可靠性,满足电磁兼容性要求。
2025-11-24 13:41:27 68KB EMC|EMI 开关电源
1
模拟集成单元电路 小结(20091210 6.8).ppt
2025-09-05 10:49:46 798KB 模拟集成
1
在iOS开发过程中,随着新版本的推出,开发者经常会遇到各种适配问题。本文将深入探讨在iOS13中以及使用Xcode11.0时可能遇到的一些常见坑,并提供相应的解决策略。 iOS13引入了全新的UI设计语言和交互方式,其中`presentViewController`的展示效果发生了变化。在iOS13以前,当使用`presentViewController`时,默认的`modalPresentationStyle`是`UIModalPresentationFullScreen`,即全屏显示。但在iOS13中,这个默认值变成了`UIModalPresentationAutomatic`,系统会根据上下文自动选择合适的呈现方式。如果你希望保持原有的全屏模态展示效果,需要手动设置`modalPresentationStyle`为`UIModalPresentationFullScreen`。以下是一个示例代码: ```swift let vc = ViewController() vc.title = "presentVC" let nav = UINavigationController(rootViewController: vc) nav.modalPresentationStyle = .fullScreen self.window?.rootViewController?.present(nav, animated: true, completion: nil) ``` 关于私有KVC(Key-Value Coding)的使用,iOS13增强了对私有API的检测和限制。在之前的版本中,开发者有时会使用KVC来访问一些未公开的属性,例如设置`UITextField`的占位符颜色和字体。然而,在iOS13中,这种做法可能导致应用崩溃。为了兼容iOS13,应避免使用私有KVC,而是使用官方提供的API。对于`UITextField`的占位符属性,我们可以使用`attributedPlaceholder`来实现相同的效果: ```swift let placeholderText = NSAttributedString(string: "姓名", attributes: [ .font: UIFont.systemFont(ofSize: 14), .foregroundColor: UIColor.red ]) textField.attributedPlaceholder = placeholderText ``` 此外,iOS13对用户隐私和权限管理也进行了强化,例如照片、位置等权限的请求和处理。开发者需要确保正确处理这些权限,避免在未经用户许可的情况下访问敏感数据。同时,新的黑暗模式(Dark Mode)也是iOS13的一大特性,应用需要适配这一模式,确保在暗色背景下界面依然清晰易读。这涉及到颜色、图片、背景等元素的调整。 Xcode11.0作为支持iOS13开发的工具,自身也有一些需要注意的地方。例如,更新Xcode后,编译器可能会对代码进行更严格的检查,导致一些旧的编码习惯报错。此时,需要按照编译器提示进行修正,遵循Swift或Objective-C的最佳实践。另外,Xcode11引入了Swift Package Manager(SPM),使得第三方库的管理更加方便,但这也可能要求开发者对依赖库进行更新以适应新版本。 iOS13的适配和Xcode11.0的使用过程中,开发者需要关注UI表现、私有API的使用、权限管理和新功能的适配。同时,及时更新代码以符合最新的编程规范,确保应用在新平台上的稳定性和用户体验。通过了解并解决这些坑,开发者可以更好地应对iOS系统的升级迭代。
2025-08-10 12:37:35 92KB iOS13
1
**串口服务器Moxa NPort 5650详解** Moxa NPort 5650是一款专为将串口设备接入网络而设计的串口服务器,它允许串口设备通过TCP/IP协议进行通信,从而实现串口设备的网络化。这款设备的核心功能在于将传统的串行通信转换为基于IP的网络通信,使得那些不支持网络连接的设备也能在网络环境中运行。 **NPort工作模式** 1. **Real Com模式**: 在这种模式下,NPort会模拟一个真正的串口,通过驱动程序将其IP地址和端口号映射到主机的虚拟串口(如tty)。应用程序可以直接像与本地串口通信一样与NPort交互,而NPort则负责将数据打包成TCP/IP帧在网络上传输并转发给串口设备。 2. **TCP Server模式**: NPort在此模式下作为服务器端,等待客户端发起连接请求。一旦连接建立,客户端可以从NPort获取数据或向其发送数据。 3. **TCP Client模式**: 在这种模式下,NPort主动连接到指定的IP地址和端口,一旦连接成功,串口数据可以在两个设备之间传输,完成后NPort可自动断开连接。 4. **UDP模式**: NPort支持多播,能够广播串口设备数据到多个目的地,同时也能接收来自多个源的数据。 **多NPort连接配置** 对于多个NPort的配置,可以通过修改配置文件(如示例中的npreal2d.cf)来增加IP地址和更改虚拟串口名称,以实现多个NPort设备的并行连接和管理。 **参数说明** - **local tcp port**: 用于建立远程TCP连接的端口号,使得远程设备可以与NPort的串口通信。 - **command port**: 设备驱动程序IP-Serial Lib与NPort通信的端口,用于发送控制指令。 - **max connection**: 允许的最大并发连接数,限制了同时与NPort进行通信的客户端数量。 - **tcp alive check time**: 当TCP连接在设定的空闲时间后,NPort会自动关闭该连接,以释放资源。 - **allow driver control**: 如果最大连接数大于1,此选项设为"Yes"时,NPort将忽略除第一个连接外的其他主机的驱动控制命令。 **应用与配置** 配置Moxa NPort 5650通常涉及以下几个步骤: 1. 安装驱动程序,如NPort Administrator。 2. 使用配置软件创建虚拟串口映射。 3. 设置NPort的工作模式,如Real Com、TCP Server、TCP Client或UDP。 4. 配置网络参数,如IP地址、子网掩码、默认网关等。 5. 调整连接参数,如最大连接数、心跳检测时间等。 **使用场景** Moxa NPort 5650常用于工业自动化、楼宇自动化、能源管理等领域,它可以连接PLC、温湿度传感器、条形码扫描器等串口设备,将这些设备的数据整合到网络系统中,便于远程监控和管理。 总结,Moxa NPort 5650串口服务器提供了一种灵活的方式,使得传统串口设备能够适应现代网络环境,提高了设备的可访问性和管理效率。通过选择适当的工作模式和配置参数,用户可以根据具体需求构建可靠的串口到网络的桥梁。
2025-08-08 10:58:15 1.52MB
1
主要介绍了python3常用的数据清洗方法(小结),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2024-05-22 11:10:36 246KB python3 数据清洗 python 数据清洗
1
SPI协议数据传输具体的逻辑,详细介绍SPI总线架构! 知识回顾:Linux主机驱动和外设驱动分离思想
2024-03-29 20:21:45 2KB linux spi 设备注册
1
在某FPGA系统中,对电源系统进行调试,在同样的测试条件下,发现其中有一块板相对其它的板功耗总偏大,进而对其进行调试分析。
2024-03-01 08:39:47 48KB FPGA
1
最近在整产品测试工装,看起来很简单的几项检测功能,前后也就几百行代码,但是却花了两周时间将功能调试出来,过程可谓一波三折,现总结如下。
2023-12-13 12:21:02 57KB 项目经验 离线烧录器 MSP430
1
主要介绍了Python matplotlib绘图可视化知识点整理(小结),小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
1