时间序列分析的理论与应用综述 时间序列分析提供的理论和方法是进行大型高难度综合课题研究的工具之一。其预测和评估技术相对比较完善,其预测情景也比较明确。近年来已有很多学者对于时间序列的研究取得了极其丰硕的成果,有的甚至在时间序列分析方法的基础上,研究出新的预测方法,在应用中求创新求发展。 时间序列分析不仅可以从数量上揭示某一现象的发展变化规律或从动态的角度刻划某一现象与其他现象之间的内在数量关系及其变化规律性,达到认识客观世界之目的,而且运用时间序列模型还可以预测和控制现象的未来行为。许多经济、金融、商业等方面的数据都是时间序列数据,对这些数据进行分析、处理和研究,从中挖掘有用信息是广大工作者当前研究的焦点之一。 目前时间序列的预测和评估技术相对比较完善,其预测情景也比较明确,综合他人的智慧、借助各种资料,本文介绍了时间序列分析的基本理论及其进展,阐述了它目前的应用领域及未来的发展趋势。 时间序列分析产生的背景7000年前的古埃及人把尼罗河涨落的情况逐天记录下来,就构成所谓的时间序列。对这个时间序列长期的观察使他们发现尼罗河的涨落非常有规律。象古埃及人一样按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列,对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 早期的时间序列分析通常都是通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析。古埃及人发现尼罗河泛滥的规律就是依靠这种分析方法。但随着研究领域的不断拓广,在很多研究领域中随机变量的发展通常会呈现出非常强的随机性,人们发现依靠单纯的描述性时序分析已不能准确地寻找出随机变量发展变化的规律,为了更准确地估计随机序列发展变化的规律,从20世纪20年代开始,学术界利用数理统计学原理分析时间序列,研究的重心从表面现象的总结转移到分析序列值内在的相关关系上,由此开辟了一门应用统计学科——时间序列分析[1]。 时间序列分析方法最早起源于1927年数学家Yule提出建立自回归模型(AR模型)来预测市场变化的规律。1931年,另一位数学家在AR模型的启发下,建立了移动平均模型(MA模型),初步奠定了时间序列分析方法的基础。20世纪60年代后,时间序列分析方法迈上了一个新的台阶,在工程领域方面的应用非常广泛。近几年,随着计算机技术和信号处理技术的迅速发展,时间序列分析理论和方法更趋完善。 时间序列分析的基本思想与理论进展不论是经济领域中每年的产值、国民收入、某一商品在某一市场上的销量、价格变动等,或是社会领域中某一地区的人口数、医院患者人数、铁路客流量等,还是自然领域的太阳黑子数、月降水量、河流流量等等,都形成了一个时间序列。根据这些时间序列,较精确地找出相应系统的内在统计特性和发展规律311性,从中提取人类所需要的准确信息的方法就是时间序列分析。它是一种根据动态数据揭示系统动态结构和规律的统计方法。其基本思想是根据系统的有限长度的运行记录,通过对记录的分析和研究,揭示系统的内在规律和发展趋势。 时间序列分析的应用领域非常广泛,包括经济领域、金融领域、商业领域、社会领域、自然科学领域等等。在这些领域中,时间序列分析都可以应用于对系统的预测和控制,例如对股票市场的预测,对经济指标的预测,对气候的预测等等。 时间序列分析的优点很多,例如它可以对系统的内在规律和发展趋势进行揭示,可以对系统的未来行为进行预测,可以对系统的风险进行评估等等。但是,时间序列分析也存在一些缺点,例如它需要大量的数据支持,需要复杂的算法和模型,需要对系统的深入了解等等。 时间序列分析的发展趋势非常明确,例如随着计算机技术和信号处理技术的进一步发展,时间序列分析理论和方法将更加完善;随着数据挖掘技术的发展,时间序列分析将更加关注数据挖掘和知识发现;随着人工智能和机器学习技术的发展,时间序列分析将更加关注智能化和自动化等等。 时间序列分析是一种非常重要的统计方法,它可以对系统的内在规律和发展趋势进行揭示,可以对系统的未来行为进行预测,可以对系统的风险进行评估等等。它的应用领域非常广泛,包括经济领域、金融领域、商业领域、社会领域、自然科学领域等等。
2025-12-09 02:36:57 110KB
1
随着移动机器人应用领域的扩大和工作环境的复杂化,传统路径规划算法因其自身局限性变得难以满足人们的要求。近年来,智能仿生算法因其群集智慧和生物择优特性而被广泛应用于移动机器人路径规划优化中。首先,按照智能仿生算法仿生机制的来源,对应用于路径规划优化中的智能仿生算法进行了分类。然后,按照不同的类别,系统的叙述了各种新型智能仿生算法在路径规划优化中取得的最新研究成果,总结了路径规划优化过程中存在的问题以及解决方案,并对算法在路径规划优化中的性能进行了比较分析。最后对智能仿生算法在路径规划优化中的研究方向进行了探讨。
2024-07-08 11:44:29 1.51MB 移动机器人
1
自编码器及其应用综述.docx
2024-06-17 21:46:12 165KB
指出遗传算法的不足,将免疫学原理引入遗传算法,进而形成免疫遗传算法。针对免疫遗传算法在优化问题中的研究现状,从编码技术、先验知识、操作算子、混沌理论引入、多种群方式、与小生境理论结合等方面进行了总结,指出了不足之处,最后探讨了免疫遗传算法需要进一步研究的问题和发展方向。
1
国内外分布式水文模型研究和应用综述,罗文兵,洪林, 分布式水文模型研究已成为现代水文界研究的热点,是真实描述和科学揭示流域水文过程和规律的一个有效途径,为研究水文、生态和�
2023-01-07 00:51:52 274KB 首发论文
1
环境感知以及导航定位是无人驾驶汽车(以下简称无人车)技术的关键组成部分。针对驾驶环境进行定义和分类,提出与环境相互匹配的传感器组合方法。在此基础上,着重介绍传感器技术以及环境感知技术,比较各技术优缺点,并结合导航与定位对无人车组成架构进行概括介绍,并对未来无人车环境感知技术进行展望。
2023-01-06 18:58:42 355KB 无人车 传感器 环境匹配 环境感知
1
语音识别作为信息技术中一种人机接口的关键技术,具有重要的研究意义和广泛的应用价值。介绍了语音识别技术发展的历程,具体阐述了语音识别概念、基本原理、声学建模方法等基本知识,并对语音识别技术在各领域的应用作了简要介绍。
1
交通和每个城市的发展都是相辅相成的,作为智慧城市建设的重要分支,智慧交通得到了越来越多的关注。简述了智慧交通的概念和总体架构,重点论述了无线传感网络、数据挖掘、智能交通云等关键技术在智慧交通中的应用,最后对智慧交通的实际应用现状做了说明。
2022-12-15 00:04:17 391KB 智慧城市
1
初步了解RFID技术发展及应用,RFID初步入门。
2022-11-15 19:39:51 402KB RFID
1
k最近邻算法(kNN)是一个十分简单的分类算法,该算法包括两个步骤:(1)在给定的搜索训练集上按一定距离度量,寻找一个k的值。(2)在这个kNN算法当中,根据大多数分为一致的类来进行分类。kNN算法具有的非参数性质使其非常易于实现,并且它的分类误差受到贝叶斯误差的两倍的限制,因此,kNN算法仍然是模式分类的最受欢迎的选择。通过总结多篇使用了基于kNN算法的文献,详细阐述了每篇文献所使用的改进方法,并对其实验结果进行了分析;通过分析kNN算法在人脸识别、文字识别、医学图像处理等应用中取得的良好分类效果,对kNN算法的发展前景无比期待。
2022-11-12 19:00:45 921KB 论文研究
1