使用循环神经网络(RNN)实现影评情感分类 作为对循环神经网络的实践,我用循环神经网络做了个影评情感的分类,即判断影评的感情色彩是正面的,还是负面的。 选择使用RNN来做情感分类,主要是因为影评是一段文字,是序列的,而RNN对序列的支持比较好,能够“记忆”前文。虽然可以提取特征词向量,然后交给传统机器学习模型或全连接神经网络去做,也能取得很好的效果,但只从端对端的角度来看的话,RNN无疑是最合适的。 以下介绍实现过程。 一、数据预处理 本文中使用的训练数据集为https://www.cs.cornell.edu/people/pabo/movie-review-data/上的sentence
2021-10-09 14:34:09 119KB rnn 分类 分类数据
1
主要为大家详细介绍了基于循环神经网络(RNN)实现影评情感分类,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
2021-10-04 13:27:40 119KB 神经网络 影评 分类
1
基于RNN的影评情感分类代码(代码简单,适用于刚开始学习的小白参考)
2021-06-08 17:28:32 111.15MB 自然语言处理 神经网络 影评情感分类
1