(IEEE复现)多艘欠驱动无人水面艇编队协同路径跟踪控制:反步法控制器+Lyapunov误差约束+径向基函数神经网络在线估计和补偿仿真内容概要:本文围绕多艘欠驱动无人水面艇(USV)编队协同路径跟踪控制问题,提出了一种结合反步法控制器、Lyapunov误差约束和径向基函数(RBF)神经网络的控制策略。通过反步法设计控制器以实现精确的路径跟踪,利用Lyapunov稳定性理论构建误差约束条件确保系统稳定性,并引入RBF神经网络对系统中的未知动态和外部干扰进行在线估计与补偿,从而提升控制精度和鲁棒性。该方法在Matlab/Simulink环境中进行了仿真验证,复现了IEEE相关研究成果,展示了其在复杂海洋环境下多艇协同控制的有效性与先进性。; 适合人群:具备自动控制、机器人学或船舶工程背景,熟悉非线性控制理论与仿真工具(如Matlab)的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究多智能体系统在不确定环境下的协同控制机制;②深入理解反步法、Lyapunov稳定性分析与神经网络自适应估计的融合设计方法;③应用于无人艇、无人潜器等海洋装备的路径跟踪与编队控制算法开发与优化; 阅读建议:建议读者结合文中提到的仿真代码进行实践操作,重点关注控制器设计步骤、Lyapunov函数构造逻辑以及RBF神经网络的权重更新律实现,同时可拓展至其他智能算法在海洋运载器控制中的应用研究。
2026-02-19 23:23:09 793KB 径向基函数神经网络 路径规划
1
基于布里渊效应的分布式光纤传感器以其可在沿光纤中同时获得被测量场时间和空间上的连续分布信息,成为当前国际的研究热点。根据光纤中布里渊散射谱的传输特点和高精度特征提取的要求,提出了利用莱文伯马夸特(L-M)算法调节权值的径向基函数神经网络(RBFN)对布里渊散射谱进行特征提取。通过与反向传播(BP)神经网络、五次多项式曲线拟合法和三次样条插值法进行预测比较,在中心频率为11.213 GHz,权重比为4∶1的仿真散射谱模型中,本方法相对误差最小,仅0.0015179%,温度相对误差仅为0.152 ℃,且拟合度较好。在不同脉宽和不同温度下的同一检测系统中,前者的综合评价指标优于其他三种拟合方法。数值分析和实验研究均表明径向基函数神经网络适用于对布里渊散射谱进行拟合,有效提高了预测精度。
2023-04-09 17:25:21 3.94MB 光纤光学 布里渊散 径向基函 拟合
1
014_基于径向基函数神经网络(RBF)的数据分类预测 Matlab代码实现过程,调用newrbe函数实现
2022-08-19 16:06:01 71KB 机器学习 神经网络 深度学习 Matlab
1
013_基于径向基函数神经网络(RBF)的数据回归预测 Matlab代码实现过程,调用newrbe函数实现
2022-08-16 09:07:05 13KB 机器学习 神经网络 深度学习 Matlab
1
径向基函数神经网络模型与学习算法.ppt
2022-05-26 14:06:56 467KB 神经网络 学习 算法 文档资料
2.5径向基函数神经网络模型与学习算法.ppt
2022-05-24 18:04:27 486KB 神经网络 学习 算法 文档资料
径向基函数神经网络芯片ZISC78及其应用.pdf
径向基函数神经网络对一已知函数逼近
2022-05-09 19:23:35 78KB 神经网络 线性预测
1
一种径向基函数神经网络在线训练算法及其在 非线性控制中的应用
2022-04-12 17:09:58 195KB 在线训练 神经网络
1
 能源短缺和环境问题已成为本世纪全球面临的最重要课题,作为一种新的能源形式,固体氧化物燃料电池(SOFC)技术日益受到重视。由于现有的SOFC模型过于复杂,难以满足工程上对SOFC系统实时控制的需求,提出利用粒子群算法(PSO)优化径向基函数(RBF)神经网络,从而实现对SOFC的建模。PSO对RBF神经网络的中心值和连接权值进行优化,提高了网络的泛化性能,使其非线性逼近能力更强,从而达到精确模型的目的。仿真实验验证了粒子群算法在SOFC建模的有效性。
1