基于STM32F103单片机,利用PAJ7620手势识别模块实时检测手势类型,并将结果通过串口调试助手打印出来。大家可在此例程基础上,根据自身项目需求对工程源码进行拓展。更多详细信息,请查看博客文章:STM32 PAJ7620U2手势识别模块(IIC通信)程序源码详解_paj7620u2手势识别原理-CSDN博客。 STM32F103单片机是ST公司生产的一款广泛应用于嵌入式系统的高性能ARM Cortex-M3微控制器。PAJ7620则是一款集成红外传感器的触摸手势识别模块,支持IIC通信协议,能够实现无需触摸的空中手势识别功能。在STM32F103与PAJ7620红外手势识别项目中,两者结合实现手势识别功能。 整个项目的实现流程大致分为几个步骤。需要对STM32F103单片机进行基本的配置,包括时钟系统、I/O端口以及串口通信等。在配置好单片机的基础上,接下来则是对PAJ7620模块的集成。由于PAJ7620支持IIC通信,因此需要初始化IIC接口,并配置相关的参数以确保STM32F103与PAJ7620模块能够成功进行数据交换。 在硬件连接方面,PAJ7620模块通过IIC接口与STM32F103单片机相连接,模块的电源和地线也需正确接入,保证模块的正常工作。通过IIC通信协议,STM32F103单片机能够发送控制指令到PAJ7620模块,并读取模块返回的手势识别数据。 实现手势识别功能的核心在于PAJ7620模块的固件程序,该程序能够将接收到的红外传感器数据转化为手势类型。在接收到手势数据后,STM32F103单片机会处理这些数据,并通过串口输出识别结果。串口通信的实现是通过配置STM32F103单片机的串口模块来完成的,这样开发者可以利用串口调试助手来观察识别结果。 在源码层面,开发者需要对STM32F103的固件进行编程,编写相应的程序代码来实现对PAJ7620模块的控制和手势数据的处理。程序通常包括初始化代码、手势数据读取和解析、以及数据输出等模块。具体到代码细节,可能需要实现IIC通信协议的底层驱动、数据帧的解析以及手势识别算法等。 该项目的例程代码可以作为一个基础的框架,开发者可以根据自己的实际需求进行修改和拓展。例如,可以在识别特定手势后触发单片机控制的LED灯,或者根据手势动作控制机械臂的运动等等。此外,代码中可能会包含一些调试信息,以帮助开发者理解程序的运行状态,调整和优化系统的性能。 该文档提供的资源下载地址以及密码文件可能包含了项目代码的下载链接和访问权限,方便用户下载所需的工程文件。用户在得到这些资源后,可以导入到相应的开发环境中,进行程序的编译、下载和调试。 关于手势识别的原理和手势数据的具体处理方式,用户可以参考博客文章:STM32 PAJ7620U2手势识别模块(IIC通信)程序源码详解_paj7620u2手势识别原理-CSDN博客。这篇文章详细解析了手势识别模块的工作原理以及手势识别的算法实现,为用户提供了深入学习和实践的基础。 总的来看,基于STM32F103单片机与PAJ7620手势识别模块的项目,为开发者提供了一个实现空中手势控制的平台。通过该项目的实现,可以进一步开发出更多的交互式应用,如手势控制玩具、智能家电等。
2025-07-15 15:40:44 56KB STM32F103
1
计算机视觉与模式识别领域近年来取得了长足的发展,特别是在手势识别方面,它作为人机交互的重要方式之一,已经被广泛应用于智能控制系统、虚拟现实以及自动化设备中。本项目是基于Python3.7编程语言,结合OpenCV库,针对手势轮廓特征提取及机器学习分类技术的深入研究,并且完整地展示了从手势图像采集、预处理、特征提取,到模型训练以及最终的分类识别整个流程的开发步骤。 项目实施过程中,开发者需要对Python编程语言有较深入的理解,同时对OpenCV库的操作应熟练掌握。OpenCV库作为计算机视觉领域最流行的开源库之一,它提供了大量的计算机视觉和机器学习算法,使得开发者可以快速地进行图像处理和分析。 手势轮廓特征提取是手势识别中的关键技术。在这个项目中,开发者需要运用图像处理技术,如边缘检测、轮廓提取等,来准确地从背景中分离出手势图像,并获取手势的轮廓信息。这些轮廓信息将作为后续机器学习算法的输入特征,用于训练分类模型。 机器学习分类是通过训练算法对特征数据进行学习,从而实现分类任务的过程。在这个项目中,可能会使用到的机器学习模型包括支持向量机(SVM)、随机森林、神经网络等。这些模型需要基于提取到的特征数据进行训练,以达到准确分类手势的目的。 此外,项目中还包含了手势库的构建以及傅里叶描述子的使用。手势库的构建是为了存储大量的手势图像样本,它们将被用于训练和测试机器学习模型。傅里叶描述子则是一种用于形状描述的方法,它可以将轮廓信息转换为频域信息,这有助于更好地提取和表示形状的特征。 整个项目的开发是在Windows 10环境下进行的,这为开发者提供了稳定的操作系统平台。而在项目中提到的“gesture-recognition-master”文件夹,可能是包含了项目源代码、数据集、预训练模型以及其他重要文件的核心目录,是整个项目实现的关键部分。 此外,项目的文档资源包括“附赠资源.docx”和“说明文件.txt”,这些文档资料将为项目的开发提供指导和帮助。开发者可以通过阅读这些文档来了解项目的详细说明、安装配置指南以及使用方法等重要信息。 这个项目是计算机视觉与模式识别领域中的一个实际应用案例,它不仅涵盖了手势识别技术的关键环节,还结合了机器学习和深度学习方法,具有很高的实用价值和研究意义。通过对项目的深入分析和学习,开发者可以掌握手势识别的核心技术,为未来在相关领域的发展打下坚实的基础。
2025-06-28 12:02:03 8.85MB
1
手语手势识别是一种重要的通信方式,特别是在为聋哑人提供无障碍交流方面发挥着关键作用。随着科学技术的进步,尤其是生物信号处理和机器学习领域的快速发展,基于sEMG(表面肌电信号)和IMU(惯性测量单元)的手势识别技术已经成为研究热点。本项目涵盖了从数据收集到实时识别的全过程,以下将详细介绍其中的关键知识点。 **数据收集**是整个系统的基础。sEMG传感器被放置在手部肌肉上,记录肌肉收缩时产生的电信号。这些信号反映了手指和手腕运动的信息。同时,IMU通常包含加速度计、陀螺仪和磁力计,用于捕捉手部的三维姿态和运动。通过同步采集sEMG和IMU数据,可以得到丰富的手势信息。 **数据预处理**是提高识别准确性的关键步骤。**去噪**是必要的,因为sEMG信号易受噪声干扰,如电源噪声、肌纤维颤动等。通常采用滤波技术,如 Butterworth、Chebyshev 或巴特沃斯滤波器,来去除高频和低频噪声。接着,**特征提取**是识别的核心,这可能包括幅度特征(如均值、峰值、方差等)、时间域特征(如上升时间、下降时间)和频率域特征(如功率谱密度、谐波分析)。此外,**数据分割**也很重要,通常根据手势的起始和结束点进行切分,确保每个样本对应一个完整的手势。 接下来,**神经网络搭建**是模型训练的核心。可以选择多种神经网络架构,如卷积神经网络(CNN)利用其在图像处理中的强大能力处理sEMG的时间序列数据,或者循环神经网络(RNN)、长短时记忆网络(LSTM)捕捉时间序列的依赖关系。更先进的模型如门控循环单元(GRU)也可以考虑,它们在处理序列数据时能更好地处理长期依赖问题。 在模型训练过程中,**超参数调整**至关重要,包括学习率、批量大小、网络层数、节点数量等。**优化器**的选择也会影响训练效果,如随机梯度下降(SGD)、Adam或RMSprop。同时,为了避免过拟合,通常会采用**正则化**(如L1、L2正则化)和**dropout**策略。 实现**实时识别**需要优化模型以满足实时性能的要求。这可能涉及到模型轻量化、硬件加速(如GPU或专门的AI芯片)以及高效的推理算法。为了保证流畅的用户体验,识别速度和准确性之间的平衡是实时识别系统设计的关键。 基于sEMG和IMU的手势识别是一个涉及生物信号处理、数据预处理、深度学习模型构建和实时应用等多个领域的复杂工程。这个项目涵盖了这些关键技术点,对于理解手语识别系统及其在现实世界中的应用具有很高的价值。
2025-06-19 16:47:53 39.78MB
1
此代码主分支是github上的,工程里面已经注释了修改部分,压缩包里面有一个2014_ReleaseGestureSet文件夹,里面包含984张各种手势的彩色图像,利用SVM训练样本,大家可以在此基础上继续增加样本,识别效果更加
2025-06-19 16:38:36 57.61MB 普通摄像头 凸包轮廓
1
手势手套-项目开发】是一个创新的技术项目,旨在利用智能穿戴设备替代传统的鼠标操作,提供更为直观和便捷的交互方式。这个项目的核心是Gesture Glove,一款能够识别和解析手势的手套,通过无线通信技术将用户的动作转化为电脑的指令。 在项目的实现过程中,涉及到的关键知识点包括: 1. **传感器技术**:Gesture Glove可能采用了如MPU6050这样的六轴陀螺仪和加速度计,用于检测手部的运动和旋转。MPU6050_data_func_h.c可能是处理这些传感器数据的代码文件,它负责收集并处理来自传感器的数据。 2. **嵌入式编程**:gestureglove_ino.c和calibratingbox_ino.c是Arduino编程语言(INO)的源代码文件,它们可能包含了手套和校准盒的控制逻辑。Arduino是一种流行的开源硬件平台,适合快速原型开发和嵌入式系统编程。 3. **数据处理与校准**:calibration_func_h.c可能包含了校准算法,确保手套能准确地识别和映射各种手势。校准过程是至关重要的,因为它可以消除传感器的偏移和漂移,提高手势识别的精度。 4. **Fritzing电路设计**:fritzing_finale_bb_VqhrSUBLGQ.png文件可能是使用Fritzing软件创建的电路原理图,这是一个帮助用户可视化和设计电子电路的工具。这张图片可能展示了Gesture Glove的整体硬件布局和组件连接。 5. **无线通信**:虽然没有明确指出,但手套与电脑之间的通信可能依赖蓝牙或Wi-Fi等无线技术,允许手套在一定范围内自由移动并与设备互动。 6. **Python接口**:serial_mouse_py.py是Python脚本,可能是用来解析手套发送的串行数据,并将其转化为模拟鼠标操作的代码。Python的串口通信库(如PySerial)使得手套与计算机的交互成为可能。 7. **文档**:gesture-glove-e64871.pdf可能是一个项目手册或者用户指南,包含了详细的设计原理、组装步骤、使用教程和故障排除指南。 这个项目结合了硬件设计、嵌入式编程、传感器技术、数据处理、无线通信和软件接口等多个IT领域的知识,展现了现代科技在人机交互方面的创新应用。通过学习和理解这个项目,开发者可以深入掌握智能穿戴设备的开发流程,并有可能将其扩展到更广泛的应用场景,比如游戏、医疗、教育等领域。
2025-06-19 16:26:11 1.27MB communication remote control wearables
1
毫米波雷达技术的应用领域广泛,尤其在精确的数据采集与人体追踪方面表现出色。在当前的智能技术研究中,手势识别作为人机交互的重要方式之一,越来越受到重视。通过毫米波雷达进行手势识别,不仅可以实现非接触式的操作指令传递,而且能够适应复杂的使用环境,如在光线不足或强干扰的条件下依然保持较高的识别准确率和稳定性。 在教学演示方面,通过实际的项目实战来讲解和展示毫米波雷达在手势识别中的应用,可以大大加深学习者对理论知识与实际应用之间联系的理解。在本项目中,使用毫米波雷达技术进行数据采集,通过特定算法解析人体动作,实现对不同手势的识别。这对于提升手势识别系统的智能性和用户体验具有重要意义。 教学演示内容包括多个方面,例如:介绍毫米波雷达技术的基本原理和工作方式;详细讲解数据采集过程中的关键技术和注意事项;以及如何利用采集到的数据,通过算法模型来实现精确的人体追踪和手势识别。此外,教学还涉及软件编程和硬件操作,使学生能够全面掌握从硬件设备使用到软件算法实现的整个过程。 文件名称列表中的“简介.txt”很可能是对整个教学演示项目的一个简明介绍,概述了项目的目标、内容以及预期的学习成果。而“毫米波雷达_数据采集_人体追踪_教学演示”和“PKU-Millimeter-Wave-Radar-Tutorial-main”则可能是具体教学材料和源代码的主要部分,后者可能包含了以北京大学(PKU)命名的教程项目主文件夹,里面包含了详细的指导文件、示例代码、实验指导书等,为学习者提供了一个完整的实验和学习平台。 通过本项目的实战教学,不仅可以学习到毫米波雷达的基础知识和技术应用,还能够亲身体验和实践手势识别项目开发的全过程,为未来在相关领域的深入研究和开发打下坚实的基础。
2025-06-09 15:49:18 6.96MB 手势识别
1
本资源是Flutter 双指缩放和双指移动共存手势检测系列之--2封装资源。实现双指缩放和双指移动共存手势检测以及控件封装他。 Flutter 3.10.6 two_fingers_zoom_mov_gesture:手势检测控件封装 twoFingersZoomMoveDirect: 依赖于 two_fingers_zoom_mov_gesture 的demo 使用:解压后 two_fingers_zoom_mov_gesture 与 twoFingersZoomMoveDirect 放置同一目录, 使用 twoFingersZoomMoveDirect 编译运行即可查看效果 博文参考:《Flutter 双指缩放和双指移动共存手势检测系列之--2封装》https://blog.csdn.net/daimengliang/article/details/135438197
2025-06-07 10:41:25 1015KB flutter
1
import numpy as np import cv2 imname = "6358772.jpg" # 读入图像 ''' 使用函数 cv2.imread() 读入图像。这幅图像应该在此程序的工作路径,或者给函数提供完整路径. 警告:就算图像的路径是错的,OpenCV 也不会提醒你的,但是当你使用命令print(img)时得到的结果是None。 ''' img = cv2.imread(imname, cv2.IMREAD_COLOR) ''' imread函数的第一个参数是要打开的图像的名称(带路径) 第二个参数是告诉函数应该如何读取这幅图片. 其中 cv2.IMREAD_COLOR 表示读入一副彩色图像, alpha 通道被忽略, 默认值 cv2.IMREAD_ANYCOLOR 表示读入一副彩色图像 cv2.IMREAD_GRAYSCALE 表示读入一副灰度图像 cv2.IMREAD_UNCHANGED 表示读入一幅图像,并且包括图像的 alpha 通道 ''' # 显示图像 ''' 使用函数 cv2.imshow() 显示图像。窗口会自动调整为图像大小。第一个参数是窗口的名字
2025-06-06 14:23:18 8.68MB python opencv
1
APDS-9960中文规格书、手势IC、规格书 描述 APDS-9960 器件具有高级手势检测、接近检测、数字环境光感 (ALS) 和色彩感应 (RGBC)。纤薄的模块化封装 L 3.94 × W 2.36 × H 1.35 mm,采用红外 LED 和出厂校准的 LED 驱动器,可与现有封装兼容。 手势检测 手势检测利用四个定向光电二极管来检测反射的红外能量(由集成 LED 提供),将物理运动信息(即速度、方向和距离)转换为数字信息。手势引擎的体系结构具有自动激活(基于邻近引擎结果)、环境光减法、串扰取消、双 8 位数据转换器、节省功率的转换间延迟、32 数据集的 FIFO 和中断驱动的 I2C 总线通信。手势引擎可满足各种移动设备手势要求:可以准确检测简单的 UP-DOWN-RIGHT-LEFT 手势或更复杂的手势。可调红外 LED 正时可最大限度降低功耗和噪声。 描述在下一页继续
2025-05-22 10:38:19 5.55MB 手势IC
1
Axure是一款广泛应用于原型设计的工具,尤其在IT行业中,它是产品设计初期快速构建交互模型的重要软件。本压缩包中的资源包含了一系列与Axure相关的元件,适用于iPhone原型设计以及微信小程序的设计工作,同时包含了交互手势元件,使得设计更加生动、真实。 让我们详细了解一下“Axure元件”。Axure元件库包含各种预设的UI元素,如按钮、文本框、复选框、下拉菜单等,设计师可以根据需要拖放这些元件来创建页面布局。这些元件可以自定义样式,包括颜色、大小、字体等,以满足不同项目的需求。此外,Axure还支持动态面板和中继器等高级功能,用于实现复杂的交互效果和数据管理。 “iPhone元件”则专门针对苹果手机的界面设计,提供了iPhone的屏幕框架、导航栏、底部TabBar、状态栏等组件,帮助设计师快速构建出与iOS设备相符的原型。这些元件通常会考虑iPhone的尺寸和屏幕比例,确保在模拟真实设备时的准确性和视觉一致性。 “小程序元件”是针对微信小程序设计的特定组件,如滑块、轮播图、选项卡、表单等,这些元件遵循微信小程序的规范,使得设计师能够轻松地构建出与实际小程序一致的交互体验。微信小程序作为移动端的一种轻量化应用形式,其设计要求简洁高效,这些元件可以帮助设计师快速实现这一目标。 至于“手势元件”,它们是模拟用户触摸屏操作的特殊元件,如点击、滑动、双击、长按等。通过添加这些手势元件,设计师可以展示更丰富的交互行为,使原型更加动态和贴近实际使用情况。这对于测试用户体验和功能逻辑至关重要。 这个压缩包中的所有资源都是为了提高设计效率和原型的真实感,无论是对于初学者还是经验丰富的设计师,都能够从中受益。通过组合和自定义这些元件,你可以快速搭建出具有专业外观和真实交互的原型,从而为后续的开发工作打下坚实基础。 Axure的元件库结合iPhone和小程序的特定组件,以及手势元件,为IT行业的产品设计提供了强大的支持。在实际使用中,设计师可以根据项目需求选择合适的元件,灵活组合,以创造出符合用户需求的高保真原型,进一步推动产品的成功。
2025-05-16 10:14:52 6.04MB Axure元件 小程序元件 iphone元件
1