基于无迹卡尔曼滤波和扩展卡尔曼滤波的路面附着系数估计研究——基于Matlab Simulink环境,基于Matlab Simulink的无迹卡尔曼与扩展卡尔曼滤波的路面附着系数估计研究,路面附着系数估计,采用UKF和EKF两种算法。 软件为Matlab Simulink,非Carsim联合仿真。 dugoff轮胎模块:纯simulink搭非代码 整车模块:7自由度整车模型 估计模块:无迹卡尔曼滤波,扩展卡尔曼滤波,均是simulink现成模块应用无需S-function 带有相关文献和估计说明 ,路面附着系数估计;UKF算法;EKF算法;Matlab Simulink;dugoff轮胎模块;7自由度整车模型;无迹卡尔曼滤波;扩展卡尔曼滤波;相关文献;估计说明,基于UKF和EKF算法的路面附着系数估计研究:Matlab Simulink实现
2025-12-19 10:16:38 6.52MB sass
1
基于无迹扩展卡尔曼滤波的路面附着系数估计系统:Matlab Simulink源码与建模指导,路面附着系数估计_无迹扩展卡尔曼滤波(UKF EKF) 软件使用:Matlab Simulink 适用场景:采用无迹 扩展卡尔曼滤波UKF进行路面附着系数估计,可实现“不变路面,对接路面和对开路面”等工况的路面附着系数估计。 产品simulink源码包含如下模块: →整车模块:7自由度整车模型 →估计模块:无迹卡尔曼滤波,扩展卡尔曼滤波 包含:simulink源码文件,详细建模说明文档,对应参考资料 适用于需要或想学习整车动力学simulink建模,以及simulink状态估计算法建模的朋友。 模型运行完全OK(仅适用于MATLAB17版本及以上) ,路面附着系数估计;无迹扩展卡尔曼滤波(UKF EKF);Matlab Simulink;7自由度整车模型;状态估计算法建模;模型运行完全OK。,MATLAB Simulink:基于无迹扩展卡尔曼滤波的路面附着系数估计模型
2025-12-19 10:14:49 170KB 柔性数组
1
内容概要:本文探讨了现代车辆控制系统中难以实时测得整车质量和道路坡度的问题,基于车辆纵向动力学模型,详细介绍了无迹卡尔曼滤波(UKF)算法的设计与实现,并通过CarSim与MATLAB/Simulink联合仿真,比较了双遗忘因子递归最小二乘法(RLS-MFF)、扩展卡尔曼滤波(EKF)和UKF三种算法在这两个参数估计中的效果。实验结果显示,UKF算法在估计精度方面表现出色,尽管实时性稍逊,但仍能满足实际应用的需求。 适合人群:从事车辆控制、自动驾驶技术和先进驾驶辅助系统(ADAS)的研究人员和技术人员。 使用场景及目标:① 提供一种有效的整车质量和道路坡度同步估计算法,以提升车辆控制系统的性能;② 改善自适应巡航控制系统(ACC)、自动紧急制动系统(AEB)等ADAS的性能;③ 为剩余续航里程预测和换挡策略优化提供支持。 其他说明:文中还讨论了基于传感器和基于模型的不同估计方法,并详细解释了UKF算法的具体实现步骤以及与其他两种算法的对比分析。
1
基于扩展卡尔曼滤波算法的车辆质量与道路坡度精准估计模型及Matlab Simulink实现,基于扩展卡尔曼滤波算法的车辆质量与道路坡度精确估计模型及应用研究,基于拓展卡尔曼滤波的车辆质量与道路坡度估计 车辆坡度与质量识别模型,基于扩展卡尔曼滤波,估计曲线与实际误差合理。 先用递归最小二乘法(RLS)质量识别,最后利用扩展卡尔曼坡度识别(EKF)。 附带对应文档21f 备Matlab simulink模型 2019以上版本 ,车辆质量估计;道路坡度估计;扩展卡尔曼滤波;递归最小二乘法;Matlab simulink模型,基于扩展卡尔曼滤波的车辆坡度与质量联合估计模型
2025-10-20 22:03:16 2.17MB 哈希算法
1
基于三种卡尔曼滤波算法的轨迹跟踪与估计研究:多传感器信息融合应用,基于三种卡尔曼滤波算法的轨迹跟踪与多传感器信息融合技术,多传感器信息融合,卡尔曼滤波算法的轨迹跟踪与估计 AEKF——自适应扩展卡尔曼滤波算法 AUKF——自适应无迹卡尔曼滤波算法 UKF——无迹卡尔曼滤波算法 三种不同的算法实现轨迹跟踪 ,多传感器信息融合; 卡尔曼滤波算法; AEKF; AUKF; UKF; 轨迹跟踪与估计,多传感器信息融合:AEKF、AUKF与UKF算法的轨迹跟踪与估计 在现代科技领域,多传感器信息融合技术已经成为提高系统准确性和鲁棒性的重要手段。尤其是在动态系统的轨迹跟踪与估计问题上,多传感器融合技术通过整合来自不同传感器的数据,能够显著提高对目标轨迹的跟踪和预测准确性。其中,卡尔曼滤波算法作为一种有效的递归滤波器,已经被广泛应用于各种传感器数据融合的场景中。 卡尔曼滤波算法的核心在于利用系统的动态模型和观测模型,通过预测-更新的迭代过程,连续估计系统状态。然而,传统的卡尔曼滤波算法在面对非线性系统时,其性能往往受到限制。为了解决这一问题,研究者们提出了扩展卡尔曼滤波算法(EKF),无迹卡尔曼滤波算法(UKF)以及自适应扩展卡尔曼滤波算法(AEKF)等变种。 扩展卡尔曼滤波算法通过将非线性系统线性化处理,近似为线性系统来实现滤波,从而扩展了卡尔曼滤波的应用范围。无迹卡尔曼滤波算法则采用一种叫做Sigma点的方法,通过选择一组确定性的采样点(Sigma点),避免了线性化过程,能够更好地处理非线性系统。自适应扩展卡尔曼滤波算法则结合了EKF和AEKF的优点,能够自适应地调整其参数,以应对不同噪声特性的系统。 在实际应用中,这三种算法各有优劣。EKF适合处理轻微非线性的系统,而UKF在处理强非线性系统时显示出更好的性能。AEKF则因为其自适应能力,在系统噪声特性发生变化时能够自动调整滤波器参数,从而保持跟踪性能。通过多传感器信息融合,可以将不同传感器的优势结合起来,进一步提高轨迹跟踪和估计的准确性。 例如,一个典型的多传感器信息融合应用可能涉及雷达、红外、视频等多种传感器,每种传感器都有其独特的优势和局限性。通过将它们的数据融合,可以有效弥补单一传感器信息的不足,提高系统的整体性能。融合过程中,卡尔曼滤波算法扮演着关键角色,负责整合和优化来自不同传感器的数据。 在研究和应用中,通过对比分析AEKF、AUKF和UKF三种算法在不同应用场景下的表现,研究者可以更好地理解各自算法的特点,并根据实际需要选择合适的算法。例如,在系统噪声变化较大的情况下,可能更倾向于使用AEKF;而在对非线性特性处理要求较高的场合,UKF可能是更好的选择。 多传感器信息融合技术结合不同版本的卡尔曼滤波算法,在轨迹跟踪与估计中具有广泛的应用前景。随着算法研究的不断深入和技术的持续发展,未来这一领域有望取得更多的突破和创新,为智能系统提供更加精确和可靠的决策支持。
2025-09-17 16:01:41 1.48MB
1
目标跟踪技术在计算机视觉和信号处理领域中占据着重要的地位,其中滤波算法是实现目标跟踪的核心技术之一。卡尔曼滤波(Kalman Filter, KF)、扩展卡尔曼滤波(Extended Kalman Filter, EKF)、无迹卡尔曼滤波(Unscented Kalman Filter, UKF)和粒子滤波(Particle Filter, PF)是四种常见的滤波算法,它们各有特点,适用于不同的场景和需求。 卡尔曼滤波是一种高效的递归滤波器,它能够在带噪声的线性系统中估计线性动态系统的状态。卡尔曼滤波器适用于系统模型和观测模型都是线性的情况,通过预测和更新两个阶段交替进行,实现实时的状态估计。由于其计算效率高,卡尔曼滤波在目标跟踪领域有着广泛的应用,尤其是在目标跟踪初期。 扩展卡尔曼滤波是对卡尔曼滤波的一种扩展,用于处理非线性系统的状态估计问题。在实际应用中,许多系统可以近似为非线性系统,EKF通过一阶泰勒展开将非线性函数局部线性化,然后应用标准卡尔曼滤波算法。虽然EKF在非线性系统中能够提供有效的状态估计,但其线性化的误差有时会导致滤波性能下降,尤其是在系统高度非线性时。 无迹卡尔曼滤波是另一种处理非线性系统的滤波方法。UKF采用无迹变换来捕捉非线性状态分布的统计特性,通过选择一组Sigma点来近似非线性函数的分布,避免了EKF中的线性化误差。UKF不需要计算复杂的雅可比矩阵,因此在某些情况下比EKF有着更好的性能,特别是在状态变量维数较高时。 粒子滤波又称为蒙特卡罗滤波,是一种基于贝叶斯估计的序列蒙特卡罗方法,通过一组带有权重的随机样本(粒子)来近似后验概率分布。粒子滤波特别适用于处理非线性、非高斯噪声系统的状态估计问题,理论上可以逼近任意精度的后验概率密度函数。然而,粒子滤波的计算量通常较大,尤其是在粒子数目较多时。 在实际应用中,选择哪一种滤波算法主要取决于目标跟踪系统的具体要求,包括系统模型的线性度、噪声特性、计算资源和实时性要求等因素。因此,对于卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波和粒子滤波的效果对比研究,可以帮助工程师和研究人员更好地理解每种算法的优缺点,从而在实际项目中做出更加合理的选择。 Angle_Convert.m、PF.m、UKF.m、Data_Generate.m、EKF.m、Figure.m、KF.m、main.m、Parameter_Set.m和RMS.m这些文件名称暗示了文件中可能包含了实现目标跟踪算法的源代码,以及用于生成仿真数据、设置参数、计算均方根误差(RMS)等模块。这些文件对于深入研究目标跟踪算法的实现细节,以及在不同算法间进行性能对比提供了实验基础。
1
永磁同步电机(PMSM)无感FOC控制技术,重点讨论了扩展卡尔曼滤波器(EKF)作为观测器的关键作用。文中首先简述了PMSM在现代工业中的广泛应用背景,随后深入剖析了EKF观测器的设计原理及其在无感启动中的应用。此外,还探讨了无感FOC控制策略的具体实施方法,包括转矩控制和磁场控制策略,确保电机在各种工况下保持高效稳定运行。最后,强调了代码的移植性,指出该代码可以在多种国产MCU平台上顺利运行,进一步提升了其实用价值。 适合人群:从事电机控制系统设计的研究人员和技术工程师,特别是关注高效能驱动系统开发的专业人士。 使用场景及目标:适用于需要深入了解PMSM无感FOC控制机制的研发项目,旨在提高电机系统的性能、效率和可靠性。同时,对于希望将现有技术快速迁移到新硬件平台的开发者也非常有帮助。 其他说明:本文不仅提供了理论分析,还有具体的代码实现案例,有助于读者更好地理解和掌握相关技术要点。
2025-09-04 14:37:32 524KB
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-07-29 23:41:06 3.2MB matlab
1
扩展卡尔曼滤波(Dual Extended Kalman Filter,DEKF)算法是一种高效的数据处理方法,尤其适用于解决非线性系统状态估计问题。在电池管理系统中,DEKF算法的应用主要集中在对电池的荷电状态(State of Charge, SOC)和电池健康状况(State of Health, SOH)的联合估计上。SOC指的是电池当前的剩余电量,而SOH则是指电池的退化程度和性能状态。准确估计这两项指标对于确保电池的高效运行以及延长其使用寿命具有至关重要的作用。 电池的状态估计是一个典型的非线性问题,因为电池的电化学模型复杂,涉及的变量多且关系非线性。DEKF通过在传统卡尔曼滤波的基础上引入泰勒级数展开,对非线性函数进行线性化处理,从而能够较好地适应电池模型的非线性特性。此外,DEKF算法通过状态空间模型来描述电池的动态行为,能够基于历史数据和当前测量值,递归地估计系统状态并修正其预测值。 除了DEKF算法,还可采用其他先进的滤波算法来实现SOC和SOH的联合估计。例如,无迹卡尔曼滤波(Unscented Kalman Filter,UKF)通过选择一组精心挑选的采样点来近似非线性变换的统计特性,能够更精确地处理非线性问题。而粒子滤波(Particle Filter,PF)则通过一组随机样本(粒子)来表示概率分布,并利用重采样技术来改善对非线性和非高斯噪声的处理能力。这些算法都可以根据具体的电池系统模型和应用场景需求来选择和应用。 在电池系统与联合估计的研究中,深度技术解析至关重要。电池的动态行为不仅受到内部化学反应的影响,还与外界环境条件和操作条件有关,因此在研究中需要深入分析电池的内部结构和反应机理。通过精确的数学模型来描述电池的物理化学过程,并结合先进的滤波算法,可以实现对电池状态的精确估计和预测。 在车辆工程领域,电池作为电动车辆的核心部件,其性能直接影响车辆的运行效率和安全。利用双扩展卡尔曼滤波算法对电池进行状态估计,可以实时监控电池的健康状况和剩余电量,为电池管理系统提供关键数据支持,从而优化电池的充放电策略,避免过充或过放,延长电池的使用寿命,同时保障电动汽车的安全性与可靠性。 DEKF算法在电池状态估计中的应用,为电动汽车和可再生能源存储系统的发展提供了强有力的技术支持。通过对电池状态的准确预测和健康状况的评估,不仅可以提升电池的性能和使用寿命,还可以有效降低成本,推动电动汽车和相关产业的技术进步和可持续发展。
2025-07-27 20:41:24 119KB gulp
1
基于双卡尔曼滤波DEKF的SOC动态估计:联合EKF与扩展卡尔曼滤波实现精准估计,基于双卡尔曼滤波DEKF的SOC估计与EKF+EKF联合估计方法研究:动态工况下的准确性与仿真验证,基于双卡尔曼滤波DEKF的SOC估计 具体思路:采用第一个卡尔曼ekf来估计电池参数,并将辨识结果导入到扩展卡尔曼滤波EKF算法中,实现EKF+EKF的联合估计,基于动态工况 能保证运行,simulink模型和仿真结果可见展示图片,估计效果能完全跟随soc的变化 内容:纯simulink模型,非代码搭建的 ,基于双卡尔曼滤波DEKF的SOC估计; EKF+EKF联合估计; 动态工况; Simulink模型; 估计效果跟随SOC变化。,基于双卡尔曼滤波DEKF的SOC动态估计模型
2025-07-27 20:38:04 1.31MB safari
1