电动车图片
2025-05-20 19:38:06 352.04MB 数据集
1
本数据集共包含照片5932张,共分为四类:Bacterialblight(白叶枯病)1584张,Blast(枯萎病、稻瘟病)1440张,Brownspot(褐斑病)1600张,Tungro(水稻东格鲁病)1308张。其中训练集(train):共4948张 ;测试集(val):共984张。 所有照片标签(.txt)均已手动标注,可直接放入YOLOV模型进行训练使用 整个项目地址:https://download.csdn.net/download/qq_63630507/89861781 近年来,随着深度学习技术的快速发展,目标检测算法在农业领域中识别作物病虫害的应用成为研究热点。在此背景下,一套精确的、标注完备的数据集对于训练高效的模型至关重要。本数据集针对水稻病虫害的识别问题,提供了丰富的训练和测试资源,旨在通过深度学习方法,特别是YOLOv5模型,提高水稻病虫害的检测精度和效率。 数据集详细分类为四类水稻病虫害问题,包括白叶枯病、枯萎病(稻瘟病)、褐斑病和水稻东格鲁病。每一种病虫害均有相应的高清图像进行记录,图片数量分别为1584张、1440张、1600张和1308张,总计5932张。这些图片涵盖了多种不同的农田环境和病虫害的外观形态,为模型提供了丰富的训练场景。 数据集被分为训练集和测试集两部分,其中训练集共4948张图片,用于模型的训练过程;测试集共984张图片,用于模型性能的验证和评估。通过这样的数据划分,研究者可以有效地测试模型在未知数据上的泛化能力。 所有图片都已经进行了详细的标注工作,对应的标签文件(.txt格式)已生成,这为直接利用YOLOv5模型进行训练提供了便利。标签文件中的信息严格对应图片中的目标,详细标注了水稻病虫害的位置和类别信息,确保了训练数据的质量和准确性。 数据集的共享方式为通过网络下载,提供了方便快捷的获取途径。整个项目的地址公布在互联网上,研究者可以根据提供的链接下载到完整的数据集,开始相关的模型开发和应用研究工作。 在人工智能与农业结合的领域,这类数据集的出现对于提高作物病虫害的监测能力具有重要意义。基于YOLOv5模型的水稻病虫害目标检测数据集不仅可以应用于学术研究,也可以在实际农业生产中得到应用,帮助农民及时发现病虫害,采取相应的防治措施,提高水稻的产量和质量。 数据集的构建基于大量的实地拍摄和收集工作,反映出当前农业信息化和智能化的发展趋势。利用先进的计算机视觉技术,配合深度学习算法,可以极大地提高病虫害检测的效率和精确度,减少人工检测的成本和时间,对实现智慧农业具有积极作用。随着技术的不断进步,未来在农业领域中将会有更多的应用场景被开发出来,进一步推动农业现代化的进程。同时,该数据集的成功构建和应用也将激励更多的人工智能技术和方法被引入到农业病虫害检测和管理中,以科技的力量促进农业生产的可持续发展。
2025-05-09 15:44:29 196.24MB 目标检测 数据集 yolov
1
咖啡豆识别训练数据集图片
2023-11-15 22:45:05 324.64MB 数据集 深度学习
1
1.遥感数据集,方便入门学习。 2.RSOD是一个开放的目标检测数据集,用于遥感图像中的目标检测。数据集包含飞机,油箱,运动场和立交桥,以PASCAL VOC数据集的格式进行标注。 3.数据库的亮点是,各个类别之间样本量较均衡。 4.对于一般的目标检测而言,数据集至少应该是千位数甚至上万,可能效果会比较少的数据集更好。 5.上传的是936张数据集,有图片和标签,全部一一对应。 6.可以对任意数据集进行扩充,如果需要定做,私信我,或者私信找我要扩充之后的数据集,付费咨询。 7.扩充增强方法可以采用数据模糊,亮度,裁剪,旋转,平移,镜像等变化,或者基于深度学习SRGAN增强等方式。
2023-11-08 11:54:00 308.07MB 目标检测 数据集
1
矿石数据集(包含4500张左右矿石图片) 矿石图片,均是网络上爬取获得。其中训练集包括“玄武岩”、“花岗岩”、“大理石”、“石英岩”、“煤”、“石灰石”、“砂岩”七种矿石图片。测试集包括24张相应的七种矿石图像。
2023-05-27 21:44:19 179.82MB 矿石 数据集 图片 深度学习
1
深度学习中,对不同类的数据集图片进行分类,使得训练集、测试集、验证集中含有的图片类别不冲突。例如我手头有一个医学图像处理的数据集,我要检测图片中的病变类别,分清他是肿瘤、创伤还是其它问题,因为每一类图片都对应着多个病人,但在实际训练过程中,同一个病人的病变图片差不多,如果分属于训练集、验证集、测试集,那么检测精度一定会有是会有所下降,所以需要先进行一次分类。这个程序就是起到这样一个作用。classify.py #读取图片前六位 def sixTop(fileList): sixTopName = list() for name in fileList: sixTopName.append(name[0:6]) return sixTopName #判断前六位数字是否重复,输出次数 def imgRepeat(L): repeatList = [] setList = set(L) flag=True if len(L) != len(setList): flag=False
2023-03-24 20:00:48 6KB python 深度学习 数据集分类
1
mnist数据集的图片格式,model.py文件为将mnist数据集转化为图片的代码,将其与mnist.pkl.gz放在同一文件夹之下运行py文件即可(python2.7版本)
2023-02-20 20:46:57 1KB mnist图片
1
鞋子数据集,由500,025张目录图片组成,这些图片被分为4大类——鞋子、凉鞋、拖鞋和靴子——其次是功能性类型和个人品牌。鞋子的中心是白色背景和图片在同一方向,方便分析, 鞋子数据集,由500,025张目录图片组成,这些图片被分为4大类——鞋子、凉鞋、拖鞋和靴子——其次是功能性类型和个人品牌。鞋子的中心是白色背景和图片在同一方向,方便分析,
2022-12-24 16:26:20 852.53MB 鞋子 数据集 图片 深度学习
玉米叶片病害数据集,共4000多张图片,0普通锈病- 1306图像1灰色叶斑- 574图像2枯萎病-1146图像3健康- 1162图像 玉米叶片病害数据集,共4000多张图片,0普通锈病- 1306图像1灰色叶斑- 574图像2枯萎病-1146图像3健康- 1162图像
2022-12-23 15:27:59 160.78MB 玉米叶 病害 数据集 图片
手指识别数据集,一共包含1、2、3、4类手指数量的图片,每类450张图片以上
2022-12-19 20:27:30 18.26MB 手指 识别 数据集 图片