【目的】采用机器视觉技术对新疆冰糖心红富士苹果进行重量、糖度预测和分级。【方法】分析提取苹果RGB图像中单色、波长差、HSV转换后分量等多类型图像,对比图像分割效果确定后续处理图像。采用形态学处理剔除二值化图像果梗区域,提取目标区域几何、灰度和色调频度等特征。采用多元线性和偏最小二乘回归预测苹果重量和糖度,判别分析分类苹果,结合全组合实验方法和特征优选,获得较佳特征集合。【结果】多元线性回归方法建立苹果糖度的预测模型结果最佳,使用几何和灰度的特征集合,建模集和验证集糖度预测相关系数分别为0.623和0.570;使用面积、周长、长轴长度和短轴长度特征集和,或体积、周长、长轴长度和短轴长度四个特征...
2024-05-22 15:54:11 693KB 机器视觉;
1
新疆冰糖心红富士苹果采用高光谱成像技术进行分级和糖度预测研究。在糖度预测分析中,使用正交试验设计方法确定影响预测效果的主要因素是预测回归方法、光谱预处理方法和波长合并,次要因素是光谱校正处理方法、数据类型和实测值归一化处理。提取平均光谱,经过白板校正,采用一阶微分光谱预处理,10个波长的光谱合并,基于多元线性回归方法建立苹果糖度的预测模型,其验证集苹果糖度的预测模型相关系数为0.911,预测均方根误差为0.76%Brix,相对分析误差为2.44。在分级研究中,选择712nm波长图像,Gamma灰度变换增强图像,大津算法阈值确定后分割图像,基于形态学处理剔除果梗区域,提取苹果分割后区域的面积、充实度、周长、平均灰度等特征,采用二次判别分析分级苹果,验证集苹果分级准确率达到89.5%。结果表明,高光谱图像技术既能够准确预测新疆冰糖心红富士苹果糖度品质,也可以用于基于外部品质特征的分级研究。
1